

Ex situ Conservation Group - Ad hoc workshop on small ruminant semen cryopreservation Swedish University of Agricultural Sciences, Uppsala, Sweden 10-11 June 2025

Field-based semen collection and cryopreservation in small ruminants: protocols and practices of the Cryobank of Animal Germplasm -National Research Council of Italy

FEDERICA TURRI Institute of Agricultural Biology and Biotechnology Italian National Research Council federica.turri@cnr.it

AnGR Ex Situ Conservation in ITALY

Lack of National Coordination for the Cryobank of Germplasm for Animal Genetic Resources

Over the years, genetic material has been collected by Ministry, Breeders Associations, Research Institutions, Universities, Regional authorities, independently on multiple species and breeds in the framework of various projects

An example... The Cryobank of Animal Germplasm IBBA-CNR

Institute of Agricultural Biology and Biotechnology (CNR), within the Department of Veterinary Medicine and Animal Sciences (UNIMI), Via dell'Università 6, 26900 Lodi – Italy.

DIVAS-UNIMI provides: facilities

Formally recognized in 2023 by Ministry of Agriculture, Food Sovereignty and Forests

 The cryobank benefits from funding through regional and national research projects.

IBBA-CNR provides: qualified scientific and technical staff, running costs

1. PRESERVE

Genetic diversity of various Italian local breeds

2. GENETIC MATERIAL

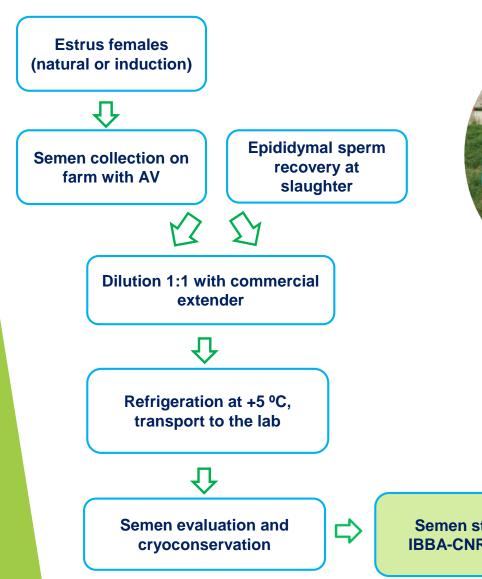
To support in vivo populations through the establishment of a genetic reserve

3. FACILITATE RESEARCH

Fertility evaluation, cryobiology, molecular analysis, genetic characterization

Objectives of the Cryobank of Animal Germplasm IBBA-CNR

The Cryobank of Animal Germplasm IBBA-CNR



4 SPECIES 31 BREEDS 287 DONORS 27539 DOSES

CDEOLEC	DDCCDC	DONOR		CENOTYPER
SPECIES	BREEDS	DONORS	SPERM DOSES	
		(n°)	(n° paillettes)	(%)
Cattle	Varzese	9	2206	56
Cattle	Modenese	5	1150	0
Cattle	Burlina	9	1079	44
Cattle	Sarda	1	342	0
Cattle	Sardo-Bruna	3	333	0
Cattle	Sardo-Modicana	1	70	0
Cattle	Calvana	2	465	0
Cattle	Garfagnina	1	259	0
Cattle	Pontremolese	1	364	0
CATTLE TOT (9 breeds)		32	6268	28
Goat	Frisa	32	601	31
Goat	Orobica	32	391	28
Goat	Verzaschese	26	933	35
Goat	Garganica	6	84	0
Goat	Nicastrese	18	294	11
Goat	Rossa Mediterranea	2	34	0
Goat	Ionica	1	47	0
Goat	Cilentana	4	92	0
Goat	Bionda dell'Adamello	2	70	0
GOAT TOT (9 breeds)		123	2546	24
Sheep	Brianzola	17	437	35
Sheep	Pecora Ciuta	12	207	0
Sheep	Comisana	4	179	100
Sheep	Massese	19	670	53
Sheep	Gentile di Puglia	16	171	19
Sheep	Ovino delle Langhe	4	92	0
Sheep	Leccese	1	54	0
Sheep	Pecora di Corteno	1	146	0
SHEEP TOT (8 breeds)		74	1956	31
Swine	Casertana	11	3804	100
Swine	Cinta Senese	14	5244	79
Swine	Mora Romagnola	1	478	100
Swine	Nero Siciliano	30	7210	100
Swine	Ecotipo Nero delle Alpi	2	119	0
SWINE TOT (5 breeds)		58	16855	91
TOT CRYOBANK		287	27625	40

SHEEP-GOAT-CATTLE SPECIES SEMEN COLLECTION ON FARM

ituto di Biologia e Biotecnologia Agraria

ON FIELD - Standardized protocols Semen collection and semen quality evaluation

BUCKS AND RAMS SEMEN COLLECTION

Prior to Collection

- Collect the donor's information (animal ID, date of birth, farm ID).
- Clean the prepuce using sterile normal saline solution.
- Thaw the frozen medium and warm it to 37 °C.
- Maintain this temperature throughout all dilution steps.

Collection Process

Buck and ram semen collection is performed directly on the farm. Semen is collected from each animal by the CNR team through repeated collections, using an artificial vagina and estrous females as mounts (goats or sheep used as teasers).

- Label a sample tube with the animal's name and/or identification number.
- Collect semen from sexually mature bucks/rams using an artificial vagina.
- Check the sample to ensure it is free of urine and other contaminants. Maintain the sample at 35–37 °C.
- Measure the semen volume and determine sperm concentration. Sperm motility and kinetics are assessed using a computer-assisted semen analyzer.
- Dilute the sample 1:1 with 37 °C cryopreservation medium or adjust to the ideal concentration to obtain **300** × **10**⁶ sperm per semen dose (0.5 ml).
- Keep the sealed tube at 20 °C for 30 minutes.
- Cool the sperm suspension to 5 °C within 30 minutes of collection using a portable refrigerator, and transport it to our laboratory in Lodi.

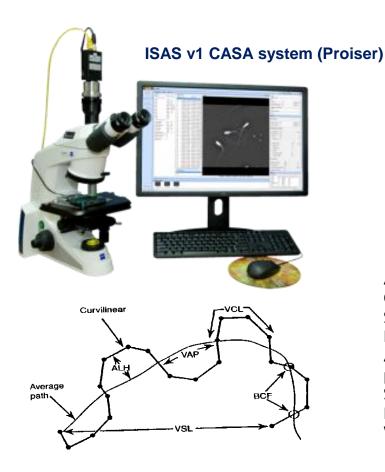


IN LAB - Standardized protocols Facilities for cryopreservation

Cryopreservation Process

- Label the semen straws with an identification code (breed code, animal ID, and production date) using a labeling printer.
- Fill 0.5 ml straws with the sperm sample using a semi-automatic filling system, ensuring a final concentration of **300** × **10**⁶ **sperm/ml**.
- Freeze the semen straws 5 cm above liquid nitrogen vapors for 20 minutes, then transfer them into liquid nitrogen storage tanks.

Multicoder printer for straws and gobelets (Minitube)


Semiautomatic filling and sealing machine (Minitube)

Nitrogen vapour

IN LAB Semen quality evaluation - advanced technologies Fresh and frozen samples

CASA SYSTEM: MOTILITY AND KINETICS SPERM PARAMETERS

Average path velocity (VAP) µm/sec, Curvilinear velocity (VCL) µm/sec, Straight line velocity (VSL) µm/sec, Linearity (LIN=VSL/VCL) % Amplitude of lateral head displacement (ALH) µm

Straightness VAP/VCL (STR) % Beat cross frequency (BCF) beats/s Wobble movement (WOB) %

SEMINAL QUALITY CHARACTERIZATION **BY FLOW CYTOMETRY**

Viability

Membrane permeability is an indicator of cellular viability. Through membrane integrity, this test indicates percentage of viable spermatozoa.

Oxidation level

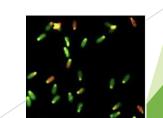
high level.

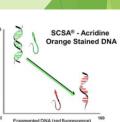
Assess accurate cell numbers and population percentages without reference beads.

This assay measures the intracellular level of Reactive Oxygen Species needed for sperm function but that are harmful at a

The acrosome is essential for fertilization. A new combination of three stains was developed by IMV. Two of the stains monitor the integrity of the acrosome and of the membrane, simultaneously. The third fluorochrome is spermspecific and thus allows to remove debris from the analysis.

Mitochondria activity


To reach the ovocyte, the sperm needs energy which is produced by the mitochondria. This assay analyzes membrane potential (polarized, depolarized) to show the integrity of the mitochondria.


Membrane fluidity

Membrane fluidity is critical for proper cell function and exchange with the outside environment. This assay assesses phospholipid disorder in the membrane.

DNA compaction

DNA fragmentation

(IMV Technologies)

EASYCYTE PLUS/5HT GEN4 with IMV SOFT

Stongly oxydized

High potential

Low potential

Normal organization

Difficulties associated with cryopreservation in local breeds

 ✓ Limited use of AI in small ruminants
 ✓ Lack of donors trained for semen collection
 ✓ Training more difficult in rams than bucks
 ✓ Lack of facilities and expertise for cryopreservation in the farming area

EMERGING TECHNIQUE: EPIDIDYMAL SPERM RECOVERY

- 1. Recovery of genetic material
- ✓ traditional collection is not possible
- ✓ accidental death of breeding animals
- ✓ end of reproductive career

Italian Journal of Animal Science

✓ after castration

- 2. Cost reduction through the creation of cryobanks
 ✓ simple technology
- bypasses the need for animal training

Taylor & Francis

Implementation and cost analysis of a regional farm animal cryobank: an Italian case study

Flavia Pizzi, Federica Turri, Teresa M. Gliozzi & Gustavo Gandini

Setting-up of operational protocols - CATTLE SPECIES

Reproduction in Domestic Animals

Reprod Dom Anim doi: 10.1111/j.1439-0531.2011.01948.x ISSN 0936-6768

Influence of Recovery Methods and Extenders on Bull Epididymal Spermatozoa Quality

F Turri^{1,2}, M Madeddu¹, TM Gliozzi¹, G Gandini² and F Pizzi¹

¹Istituto di Biologia e Biotecnologia Agraria, Unità Organizzativa di Supporto di Lodi, Consiglio Nazionale delle Ricerche, Lodi, Italy; ²Dipartimento di Scienze e Tecnologie Veterinarie per la Sicurezza Alimentare, Università degli Studi di Milano, Milano, Italy

Table 1. Sperm kinetics and viability parameters (LMS \pm SEM) in fresh epididymal sperm samples, by extraction technique

	Experimental group ¹			
Parameter	FL (n = 25)	RF(n = 21)		
Total motility (%)	71.6 ± 2.0^{a}	$80.3~\pm~2.3^{\texttt{b}}$		
Active cells (%)	$9.0~\pm~1.6$	$6.8~\pm~1.8$		
Hyperactive cells (%)	55.0 ± 4.2	$52.6~\pm~4.8$		
Average path velocity (µm/s)	$53.4~\pm~1.8$	$49.4~\pm~2.1$		
Curvilinear velocity (µm/s)	$112.8~\pm~3.5$	$109.6~\pm~4.0$		
Straight-line velocity (µm/s)	$13.7~\pm~0.9$	$12.4~\pm~1.1$		
Amplitude of lateral head displacement (µm)	$6.3~\pm~0.4$	$6.6~\pm~0.4$		
Beat cross-frequency (Hz)	$9.5~\pm~0.7$	$8.3~\pm~0.8$		
Linearity index (%)	$12.1~\pm~0.9$	$11.2~\pm~1.1$		
Straightness index (%)	30.4 ± 1.9	28.8 ± 2.2		
Viability (%)	$77.2~\pm~1.3^{\rm a}$	84.5 ± 1.5^{b}		

¹Extraction technique: FL, floated samples; RF, flushed samples. Values within each row with different letters are significantly different (n < 0.05)

RETROGRADE FLUSHING

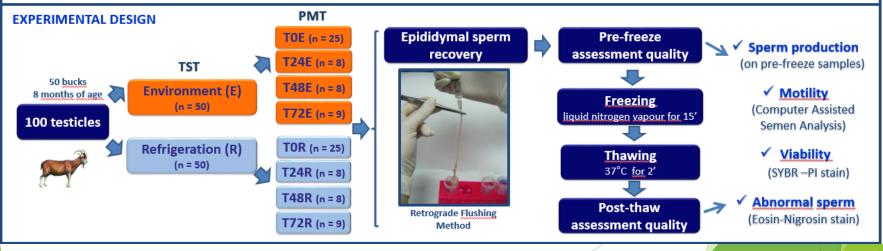
FLOAT-UP

Setting-up of operational protocols - GOAT SPECIES

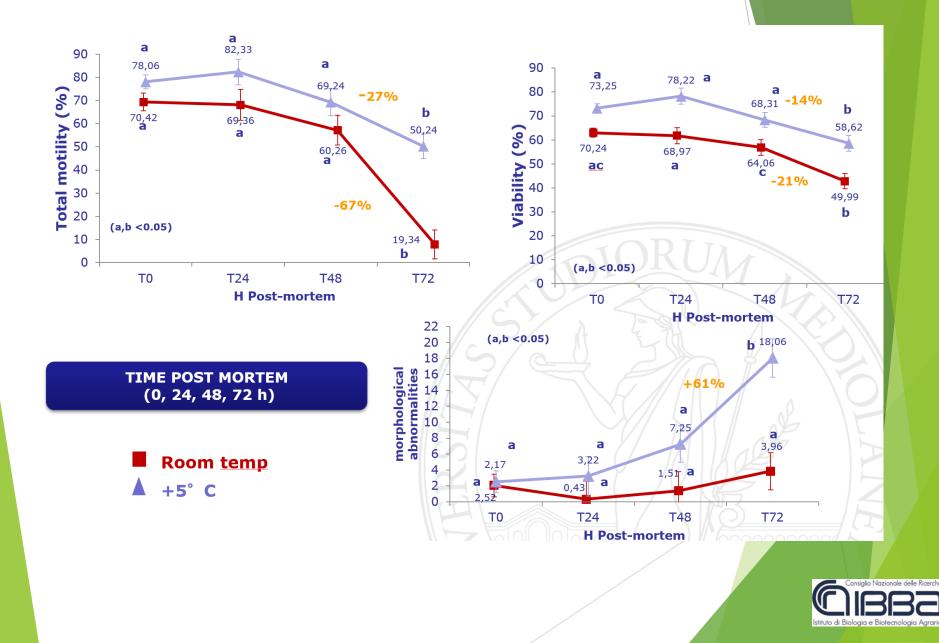
Animal, page 1 of 8 © The Animal Consortium 2013 doi:10.1017/S1751731113002279

Effect of testicle *postmortem* storage on goat frozen-thawed epididymal sperm quality as a tool to improve genebanking in local breeds

F. Turri^{1,2}, M. Madeddu^{1a}, T. M. Gliozzi¹, G. Gandini² and F. Pizzi^{1†}


¹Institute of Agricultural Biology and Biotechnology, Lodi Unit, National Research Council, c/o Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy; ²Department of Veterinary Science and Public Health, Università degli Studi di Milano, via Celoria 10, 20133 Milan, Italy

INTRODUCTION

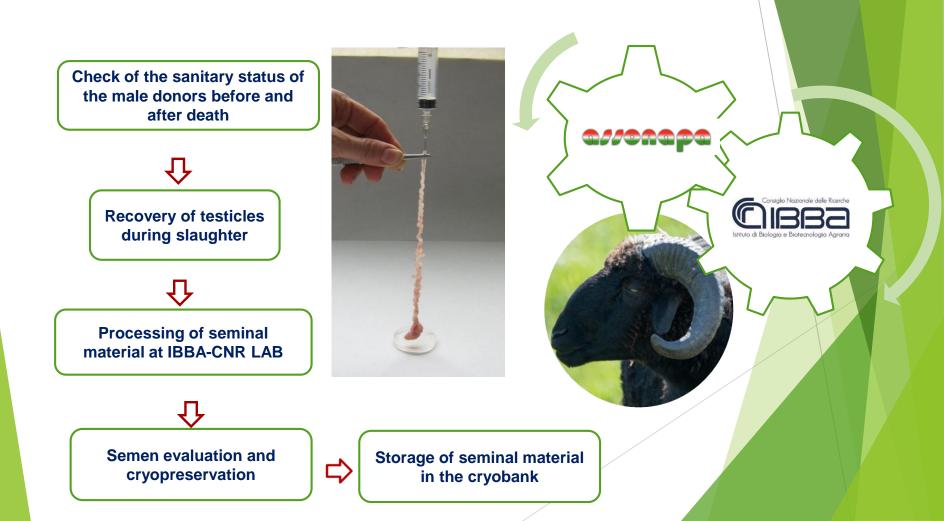

Epididymal spermatozoa obtained from slaughtered or castrated animals associated to the possibility of managing rather long periods between animal death, sperm recovery and freezing would increase the opportunities to create semen cryobanks.

AIM

The aim was the assessment of pre-freeze/post-thaw quality of goat epididymal spermatozoa as function of testicles storage temperature **(TST)** and time elapsed between animal death or castration and sperm recovery **(PMT)** in order to establish optimal protocols for the recovery and cryopreservation of epididymal sperm.

✓ RETROGRADE FLUSHINGSuitable also for caprine species

 SPERM QUALITY
 High semen quality maintained up to 48 hours post mortem (Pre-freezing e post-thawing)


✓ After 48 h post mortem
 Refrigeration of the samples is necessary

When sperm cryopreservation is not immediately practicable goat testicles should be transported and stored at refrigeration temperature (5°C) up to a maximum of 48 h post mortem to ensure an acceptable sperm quality.

FIELD APPLICATION: EPIDIDYMAL SPERM RECOVERY IN SHEEP AND GOAT SPECIES

- Difficulties in training breeding males for semen collection in different sheep breeds (longer training period respect to goat and catlle)
- Donors of high genetic value important for the in vivo population

The breeds involved – SHEEP

The breeds involved – GOAT

CILENTANA FRISA VALTELLINESE

GARGANICA

CILENTANA

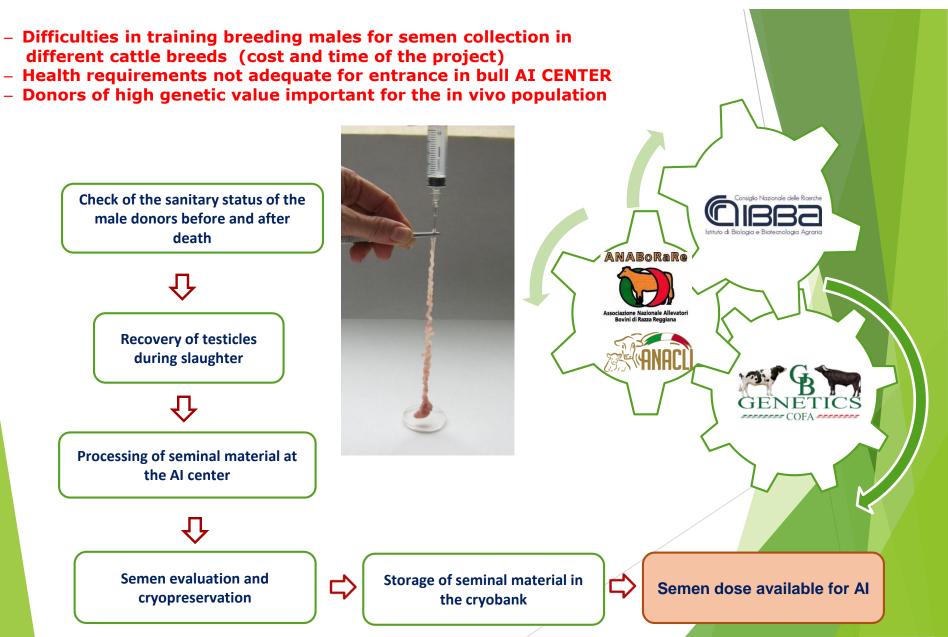
IONICA

BIONDA DELL'ADAMELLO

NICASTRESE

OROBICA

VERZASCHESE


FIELD APPLICATION: CREATION OF THE GENETIC RESERVE OF ITALIAN SHEEP AND GOAT BREEDS

	GOAT BREED	Genetic Strategy	RISK STATUS FAO	TYPE OF MATERIAL	N. DONORS	N. DOSES	VOLUME (ML)	CONC (sperm/ml)
1	Bionda Adamello	Conservation	Endangered	Ejaculate	2	70	3,65	1,95x10 ⁹
2	Cilentana	Conservation	Endangered	Ejaculate	4	92	2,4	2,64x10 ⁹
3	Frisa Valtellinese	Conservation	Endangered	Ejaculate	32	601	4,35	1,32x10 ⁹
4	Garganica	Conservation	Endangered	Ejaculate	6	84	1,25	2,70x10 ⁹
5	Jonica	Conservation	Critical	Ejaculate	1	47	5	2,10x10 ⁹
6	Orobica	Conservation	Endangered	Ejaculate	32	391	2,6	1,40x10 ⁹
7	Rossa Mediterranea	Conservation	Endangered	Ejaculate	2	34	2,5	1,32x10 ⁹
8	Nicastrese	Conservation	Vulnerable	Ejaculate/ Epididymis	18	294	1,33	2,40x10 ⁹
9	Verzaschese	Conservation	Endangered Manteined	Ejaculate	26	933	1,7	2,10x10 ⁹
					123	2546	2,75	1,99x10⁹
	SHEEP BREED	Genetic Strategy	RISK STATUS FAO	TYPE OF MATERIAL	N. DONORS	N. DOSES	VOLUME (ML)	CONC (sperm/ml)
		Genetic Strates,					()	
1	Comisana	Genetic improvement	Endangered Manteined		4	179	3,54	1,80x10 ⁹
1 2								
-	Comisana	Genetic improvement	Endangered Manteined	Epididymis	4	179	3,54	1,80x10 ⁹
2	Comisana Gentile di Puglia	Genetic improvement Conservation	Endangered Manteined Vulnerable	Epididymis Ejaculate/ Epididymis	4 16	179 171	3,54 2,26	1,80x10 ⁹ 1,09x10 ⁹
2 3	Comisana Gentile di Puglia Delle Langhe	Genetic improvement Conservation Genetic improvement	Endangered Manteined Vulnerable Endangered	Epididymis Ejaculate/ Epididymis Epididymis	4 16 4	179 171 92	3,54 2,26 3,6	1,80x10 ⁹ 1,09x10 ⁹ 2,20x10 ⁹
2 3 4	Comisana Gentile di Puglia Delle Langhe Leccese	Genetic improvement Conservation Genetic improvement Conservation	Endangered Manteined Vulnerable Endangered Endangered	Epididymis Ejaculate/ Epididymis Epididymis Ejaculate	4 16 4 1	179 171 92 54	3,54 2,26 3,6 1,8	1,80x10 ⁹ 1,09x10 ⁹ 2,20x10 ⁹ 3,80x10 ⁹
2 3 4 5	Comisana Gentile di Puglia Delle Langhe Leccese Massese	Genetic improvement Conservation Genetic improvement Conservation Genetic improvement	Endangered Manteined Vulnerable Endangered Endangered Vulnerable	Epididymis Ejaculate/ Epididymis Epididymis Ejaculate Ejaculate/ Epididymis	4 16 4 1 19	179 171 92 54 670	3,54 2,26 3,6 1,8 3,76	1,80x10 ⁹ 1,09x10 ⁹ 2,20x10 ⁹ 3,80x10 ⁹ 1,70x10 ⁹
2 3 4 5	Comisana Gentile di Puglia Delle Langhe Leccese Massese Ciuta	Genetic improvement Conservation Genetic improvement Conservation Genetic improvement Conservation	Endangered Manteined Vulnerable Endangered Endangered Vulnerable Endangered	Epididymis Ejaculate/ Epididymis Epididymis Ejaculate Ejaculate/ Epididymis Epididymis Epididymis	4 16 4 1 19 12	179 171 92 54 670 207	3,54 2,26 3,6 1,8 3,76 3,57	1,80x10 ⁹ 1,09x10 ⁹ 2,20x10 ⁹ 3,80x10 ⁹ 1,70x10 ⁹ 1,32x10 ⁹ 3,99x10 ⁹ 2,54x109
2 3 4 5 6 7	Comisana Gentile di Puglia Delle Langhe Leccese Massese Ciuta Pecora di Corteno	Genetic improvement Conservation Genetic improvement Conservation Genetic improvement Conservation Conservation	Endangered Manteined Vulnerable Endangered Endangered Vulnerable Endangered Endangered	Epididymis Ejaculate/ Epididymis Epididymis Ejaculate Ejaculate/ Epididymis Epididymis Epididymis	4 16 4 1 19 12 1	179 171 92 54 670 207 146	3,54 2,26 3,6 1,8 3,76 3,57 11	1,80x10 ⁹ 1,09x10 ⁹ 2,20x10 ⁹ 3,80x10 ⁹ 1,70x10 ⁹ 1,32x10 ⁹ 3,99x10 ⁹

- ✓ AVAILABLE as GENETIC RESERVE FOR THE BREEDS
- ✓ PROCEDURE INITIATED TO AUTHORIZE SEMEN DOSES FOR AI WITH THE MINISTRY
- ✓ SEMEN FROM THE DIFFERENT BREEDS IS BEING CHARACTERIZED FOR FREEZABILITY AND QUALITY USING FLOW CYTOMETRY

FIELD APPLICATION: EPIDIDYMAL SPERM RECOVERY IN CATTLE SPECIES

The breeds involved

Sardo Modicana

Sardo Bruna

Sarda

Varzese

Calvana

Modenese

Pontremolese

Garfagnina

The semen doses produced

N°	BREED	Sample Cryobank IBBA-CNR	Date of collection	N. SEMEN DOSES
1	Sardo-Bruna	SB01	12.04.23	179
2	Sardo-Bruna	SB02	12.04.23	154
3	Sarda	SA01	12.04.23	342
4	Calvana	CA01	31.01.24	218
5	Sardo- Modicana	SM01	08.02.24	67
6	Garfagnina	GAR01	20.05.24	259
7	Calvana	CA02	05.12.24	240
8	Pontremolese	PO01	04.02.25	364
9	Garfagnina	GAR02		550
10	Varzese	VAR06	29.03.2022	119
11	Varzese	VAR07	02.11.2022	285
12	Varzese	VAR08	19.06.2023	142
13	Varzese	VAR09	14.02.2024	502
14	Modenese	MO01	23.11.2022	46
15	Modenese	MO02	01.12.2022	190
16	Modenese	MO03	13.02.2023	500
17	Modenese	MO04	13.02.2023	142
18	Modenese	MO05	06.11.2023	272
				4571

✓ AVAILABLE for AI to SUPPORT IN VIVO-POPULATION

Semen samples were collected under National sanitary criteria

✓ Donors Health Examinations

✓ Sanitary condition of the herds

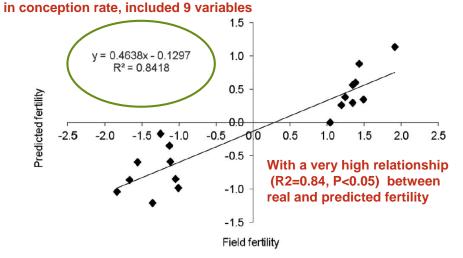
CATTLE	SHEEP / GOAT
Trichomonas foetus – Prepuce	Brucella abortus/melitensis
Campylobacter – Prepuce	Caprine Arthritis Encephalitis Virus (CAEV) / Visna-Maedi
BHV-1 – Infectious Bovine Rhinotracheitis, gB, gE	Chlamydia abortus
Mycobacterium avium paratubercolosis	Q Fever - Coxiella burnetii
Blue Tongue	Mycobacterium avium paratub.
BVD – Bovine Viral Diarrhea	Leptospira spp
Leptospira spp	Toxoplasma gondii
Brucella abortus/melitensis	Blue Tongue
Enzootic Bovine Leukosis	Mycoplasma agalactiae

SOME RESEARCH ACTIVITIES

Animal, page 1 of 8 © The Animal Consortium 2017 doi:10.1017/S1751731117000684

Identify the most suitable parameters that would provide reliable prediction of fertility

Table 1 Computer-assisted semen analysis and flow cytometry semenquality parameters of 18 Holstein bulls based on fertility ranking $(LSM \pm SEM)$


		Fertility		
	Hig	h	Lov	v
Parameters	LSM	SEM	LSM	SEM
MTOT (%)	75.72 ^a	2.09	71.56 ^b	1.59
ACT (%)	52.45 ^A	1.53	43.92 ^B	1.40
HYP (%)	24.15	1.88	27.01	1.58
BCF (Hz)	10.87	0.29	10.73	0.27
VCL (µm/s)	112.28	2.78	113.04	2.36
/AP (µm/s)	56.30	1.25	57.99	1.14
STR (%)	64.86 ^A	1.03	59.26 ^B	0.94
ALH (µm)	6.59	0.18	6.49	0.15
/SL (µm/s)	36.23	0.88	34.21	0.81
_IN (%)	30.15 ^A	0.80	27.71 ^B	0.69
HMMP (%)	45.07	1.76	44.46	1.51
AIV (%)	38.84	2.19	38.06	1.84
ARV (%)	2.67	0.18	2.29	0.16
/IAB (%)	48.87 ^a	2.15	44.70 ^b	1.80
_DV (%)	24.80	1.85	23.83	1.52
HDV (%)	5.03	0.24	4.52	0.21
NPV (%)	46.26	2.49	44.32	2.00
PV (%)	0.73	0.15	0.69	0.12
NPVFe (%)	45.93	2.48	43.64	1.99
PVFe (%)	1.18	0.20	1.44	0.17
Alpha-T	0.5237	0.0005	0.5230	0.0005
ATSD	0.0144	0.0003	0.0136	0.0003
%DFI (%)	3.10 ^A	0.16	4.04 ^B	0.15
%HG (%)	3.09	0.13	3.18	0.11

Correlations were observed between ERCR and some kinetic parameters, and viability and %DFI.

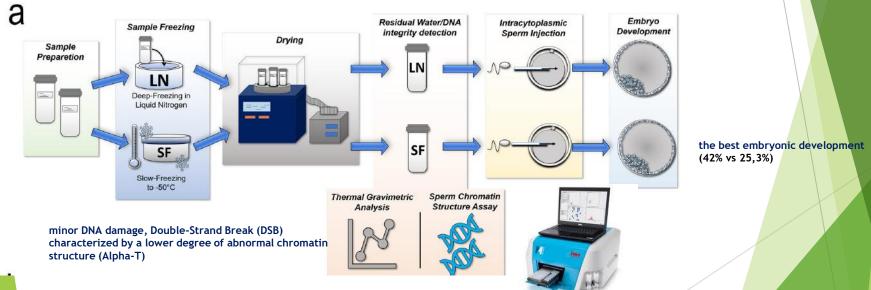
The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen

T. M. Gliozzi*, F. Turri*, S. Manes, C. Cassinelli and F. Pizzi[†]

Institute of Agricultural Biology and Biotechnology, Lodi Unit, National Research Council, via Einstein, 26900 Lodi, Italy Prediction model that explained almost half of the variation

Figure 1 Relationship between fertility rates predicted by an equation based on the combination of nine sperm quality parameters and field fertility (expressed as the estimated relative conception rate) observed in 18 Holstein bulls ($R^2 = 0.84$, P < 0.05). The line indicates the trend in the data.




APPLICATION OF FREEZE-DRIED PROCEDURE IN RAM SPERMATOZOA WITH TWO COOLING PROTOCOLS

scientific reports

OPEN Whole genome integrity and enhanced developmental potential in ram freeze-dried spermatozoa at mild sub-zero temperature

> Luca Palazzese^{1,6}, Debora Agata Anzalone^{1,6}, Federica Turri², Marco Faieta³, Anna Donnadio⁴, Flavia Pizzi², Paola Pittia³, Kazutsugu Matsukawa⁵ & Pasqualino Loi^{1⊠}

Significant technological advancement for the development of lyophilization as a valuable and cheaper alternative to deep-freezing in LN for ram semen.

UNIVERSITÁ Degli stu

DITERAMO

APPLICATION OF VACUUM-DRYING ENCAPSULATION TECHNIQUE IN RAM SPERMATOZOA

Frontiers Frontiers in Veterinary Science

TYPE Original Research PUBLISHED 30 November 2023 DOI 10.3389/fvets.2023.1270266

Reviving vacuum-dried encapsulated ram spermatozoa via ICSI after 2 years of storage

Luca Palazzese^{1†}, Federica Turri^{2†}, Debora Agata Anzalone³, Joseph Saragusty^{3‡}, Jacques Bonnet^{4,5}, Marthe Colotte⁶, Sophie Tuffet⁶, Flavia Pizzi², Alessia Luciani³, Kazutsugu Matsukawa⁷, Marta Czernik^{1,3} and Pasqualino Loi^{3*}

¹Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland, ²Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy, ³Department of Veterinary Medicine, University of Teramo, Teramo, Italy, ⁴Laboratoire de Recherche et Développement, Imagene Company, Pessac, France, ⁵Institut Bergonié, INSERM, Université de Bordeaux, Bordeaux, France, ⁶Plateforme de Production, Imagene, Genopole, Evry, France, ⁷Faculty of Agriculture and Marine Science. Kochi University. Kochi. Japan

<complex-block>

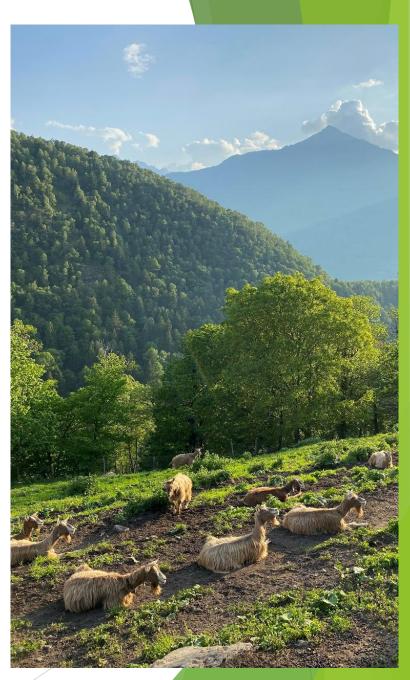
 A
 B

 Image: Construction of the set of th

Adaptation of vacuum-drying encapsulation (VDE) technique, originally developed for nucleic acid conservation, to ram spermatozoa, and compared it to canonical lyophilization (FD), testing long-term storage at room temperature (RT) and 4°C.

VDE

better structural stability and lipid composition, higher DNA integrity and embryonic development (12.8% Vs 8.7%)



My contact address:

Federica Turri, PhD Institute of Agricultural Biology and Biotechnology Italian National Research Council

c/o Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900 Lodi - Italy

0039 3294448151 federica.turri@cnr.it

