

Czech University of Life Sciences Prague

University full of life

09/06/25

Name: Filipp Georgijevič Surname: Savvulidi

Department of Animal Science

Filipp Georgijevič Savvulidi 🥑

Ing., Ph.D. · Assistant professor at Czech University of Life Sciences Prague Studying the factors affecting the cryosurvivality of livestock spermatozoa. Optimizing/development of AI methods.

Czech University of Life Sciences Prague

Native small ruminants in the Czech Republic

NÁRODNÍ PROGRAM PRO ZEMĚDĚLSKOU BIODIVERZITU

The National Programme on Conservation and Utilization of **Plant, Animal and Microbial Genetic Resources Important for Food and Agriculture**

Czech Sheep genetic recources

2024: 1095 animals (76 rams), 56 flocks Wallachian Sheep

Graf 30: zastoupení jednotlivých genealogických linií beranů v ročníku jehňat 2024

Czech University of Life Sciences Prague

Czech Goat genetic recources

flocks 2022: 627 animals in 52 flocks BSH goat

- 1. Traditional cheeses made from the milk of Wallachian ewes grazed on mountain meadows full of medicinal herbs,
- $2 \cdot Lean$ lamb meat with fine muscle bundles,
- 3. Leather with attractive long hair or handicrafts made from Wallachian wool,
- 4. Wallachian sheep can also find application in hybridization programs as a mother breed capable of using poor mountain pastures
- 5. Can be used to maintain forest-free areas in mountain areas through extensive grazing,
- 6. Wallachian sheep increase landscape attractiveness for tourists by their effect on the landscape and their direct presence in it...

Original Paper

Czech Journal of Animal Science, 68, 2023 (11): 460-468

https://doi.org/10.17221/85/2023-CJAS

Wallachian rams in CULS campus

ZECH REPUBLIC

Czech University of Life Sciences Prague

CZU.CZ

Czech cryobank for native small ruminants NÁRODNÍ CENTRUM 37 pro genetické zdroje zvířat

	No. of Sires	No. of IDs
Wallachian sheep	15	283*
Sumava sheep	58	1116
White short-haired goat	17	1597
Brown short-haired goat	10	304

Czech University of Life Sciences Prague

*additional 360 IDs planned for the year 2025

Ejaculate collection

Czech University of Life Sciences Prague

Ejaculate quality evaluation

Czech University of Life Sciences Prague

Sperm motility and freezability

The association between spermatozoa motility before sperm freezing and sperm freezability in rams is quite low

Czech J. Anim. Sci., 2025, 70(3):93-101 | DOI: 10.17221/185/2024-CJAS

Association between conventional semen variables and sperm freezability in rams

Aizhan Makhanbetova¹, Filipp Georgijevič Savvulidi², Martin Ptáček², Lucie Langerová², Beybit Kulataev¹, Nurlan Malmakov¹

- ¹ Meat Sheep Breeding Department, Kazakh Research Institute of Livestock and Fodder Production, Almaty, Republic of Kazakhstan
- ² Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sceinces (CULS) Prague, Prague, Czech Republic

Czech University of Life Sciences Prague

Straws processing

12

Straws freezing and thawing

Analytical equipment for thawed sperm analysis

Czech University of Life Sciences Prague

mCASA

Czech University of Life Sciences Prague

Clustering analysis

Sperm Motility Tracker v2.0

Novel software is a versatile tool with a very intuitive graphic interface allowing clustering analysis without programming knowledge

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022, VOL. 10, NO. 6, 585-598 https://doi.org/10.1080/21681163.2021.2012831

Clustering and classification software for sperm subpopulation analysis

Francisco Buchelly Imbachí (1)^a, Lucía Zalazar (1)^{b,c*}, Juan Ignacio Pastore (1)^{a,c}, Anabella Nicolli (1)^{b,c}, Alba Ledesma (1)^{c,d}, Federico A. Hozbor (D^d, Andreina Cesari (D^{b,c*} and Virginia Ballarin (D^{a*})

^aImage Processing Lab. ICYTE-CONICET. Electronics Engineering Department Universidad Nacional de Mar del Plata, Laboratorio de Procesamiento de Imágenes Icyte Unmdp – Conicet, Buenos Aires, Argentina; ^bInstituto de Investigaciones Biológicas (IIB) Unmdp – Conicet, Mar del Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Y Técnicas Conicet, Buenos Aires, Argentina; Biotecnología de La Reproducción, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (Inta), Balcarce, Argentina

Czech University of Life Sciences Prague

C7U.CZ

Check for updates

Final remarks

Our software module is a versatile tool with a very intuitive graphic interface allowing an automatic analysis (clustering, classification, and validation) without programming deep knowledge or expertise in clustering. As benefits, SMT v2.0 performs hierarchical clustering by default classifier parameters or by choosing the number and which ones. The user can perform the motility parameters analysis with this software or with any other CASA system only importing the parameters' data set regarding the proposed structure. Additionally, other multiparametric studies can be adapted as SMT v2.0 input datasets. The output gives information about the characteristics and relative abundance of each cluster as well as information related to which individual cell is belonging to each cluster.

The software is free for rese sion could be downloaded from http://smt.fi.mdp.edu.ar/_____roviding an agreement the licence terms and conditions. The instrumental considerations and settings for users are the same that for SMT v1.0 (Buchelly Imbachí et al. 2018).

Ovine sperm sample: results of conventional CASA analysis

	A	В	C	D	E	F	G	Н	1
1	Column1	🔽 Column2 🔤	Column3 🛛 🚽	Column4 🚽	Column5	💌 Column6	- Column7 🛛 🗖	Column8	Column9 💌
2	Experiment								
3	Animal Name	Farm Name	Progressive Cutoff	Motile Cutoff	Analysis Frames	Semen Type	Genus	Time	
4	240712 33 T0		STR >= 70 & VAP >= 50	VAP >= 20 & VSL >= 0	22	N/A	N/A	2024-07-12 11:18:51	
5									
6	Analysis								
7	ID	Concentration (million/ml)	Motile (%)	Progressive (%)	VAP (um/s)	VCL (um/s)	VSL (um/s)	LIN (%)	STR (%)
8	Average	56,61	30	20,9	110,86	122,85	99,8	84,86	78,7

Czech University of Life Sciences Prague

czu.cz

Ovine sperm sample: results of Sperm Motility Tracker v2.0

ameters											VCL	-
ameters	Reference samples	Dendrogra	m Subpopulatio	ons Compare new samples					Clustering details for:	More	206.42	
vilinear Velocity VCL (µm/s)	Add sample from d	lata file C:/	/Users/uzivatel/One	eDrive - CZU v Praze/Plocha/F	18-36.movMotilityE	Data.dat	~	Remove sample	Cluster 0 \checkmark	Std. Dev.	0.00	
erage Path Velocity									Cell count:	Min.	296.43	
Ar (µiii/s)	Sample	Cel	l Clu	ister VCL	1	Reference	e samples:	1		Max.	296.43	
ght-Line Velocity	1	1	3	124.06		Analiz	ed cells:	97	1			-
52 (2m/3)	1	2	1	0		, a realized		5.			VCL	-
rity IN (%)	1	3	1	0		Cluster	Tracks	Percentage (%)	Clustering details for:	Mean	0.00	on a similarity measure
	1	4	1	0	0		1	1.03093	Cluster 1 \lor	Std. Dev	0.00	
ntness TR (%)	1	5	2	35.81	1		41	42.268		Min	0.00	
ation	1	6	2	128.67	2		22	32 0907	Cell count:	IVIIN.	0.00	
/OB (%)		-		120.07	-		22	22,3037	41	Max.	0.00	
tude of Lateral Head displacement	1	/	2	62.36	3		23	23./113				
H (µm)	1	8	1	0					Clustering details for:		VCL	
Cross Frequency	1	9	2	49.86					clustering details for:	Mean	72.19	
CF (Hz)	1	10	1	0					Cluster 2 V	Std. Dev.	20.01	004000000004004004004000000000004444444
	1	11	2	65.29						Min.	29.77	
t	1	12	3	144.6					Cell count:	Max	102.66	te Index
All None Default		12	2	c1.05					32	Ividx.	102.00	
		13	2	01.35								
Apply changes	1	14	1	0					Clustering details for:		VCL	f clusters 97
	1	15	2	47.13					Cluster 3	Mean	137.90	
Save Analysis Results		16	2	96.54						Std. Dev.	17.22	
									Cell count:	Min.	110.12	
									Cercount	Max	168.73	
Czech Un	iversity o	flife	Science	S Prague					23			1

Flow cytometry

Czech University of Life Sciences Prague

czu.cz

H-342 Hoechst 33342 (DNA content) PI Propidium Iodide (Plasma membrane dam.) MTR DR Mitotracker Deep Red (Mito- status) PNA Peanut agglutinin (Acrosome dam.)

Our (un)published experience to share

I) Optimization of cryopreservation process for Czech native sheep

- 1. Optimization of freezing curve
- 2. Optimization of Glycerolation
- 3. Optimization of thawing curve
- 4. Quality evaluation of thawing sperm
- II) Artificial insemination of Czech native sheep 5. with cryopreserved sperm

Czech University of Life Sciences Prague

1. Freezing curve

Czech University of Life Sciences Prague

CZU.CZ

conservation program Jakub Beranek, Ludek Stadnik

Table 2. The impact of freezing curve, intersire, and daily variation on the viability of thawed Wallachian ram sperm (least square means ± standard error)

	THW	THW(PM)	THW(ACR)	THW(MTCH)
Curve	***	***	***	***
1 (n = 56)	8.91 ± 0.36^{a}	87.4 ± 0.39^{a}	$70.0 \pm 0.56^{\circ}$	78.2 ± 0.48^{a}
2(n = 56)	12.7 ± 0.57^{b}	82.9 ± 0.62^{b}	52.8 ± 0.87^{a}	73.5 ± 0.76^{b}
3(n = 136)	12.6 ± 0.80^{b}	83.2 ± 0.88^{b}	58.5 ± 1.24^{b}	73.3 ± 1.07^{b}
4(n = 28)	13.2 ± 0.57^{b}	82.5 ± 0.62^{b}	57.8 ± 0.87^{b}	74.0 ± 0.76^{b}
5(n = 43)	12.9 ± 0.65^{b}	81.7 ± 0.71^{b}	61.4 ± 1.00^{b}	75.9 ± 0.87^{ab}
Sire	***	***	***	***
1 (n = 232)	14.0 ± 0.33^{a}	81.1 ± 0.36^{a}	47.0 ± 0.59^{a}	73.3 ± 0.44^{a}
2(n = 87)	10.1 ± 0.53^{b}	86.0 ± 0.58^{b}	61.5 ± 0.96^{b}	76.6 ± 0.71^{b}
Day	***	***	***	***
b*EQ	n.s.	_	-	-
b*EQ(PM)	-	n.s.	-	-
b*EQ(ACR)	-	-	n.s.	-
b*EQ(MTCH)	-	-	-	***

https://doi.org/10.17221/226/2020-CJAS

Optimizing the conventional method of sperm freezing in liquid nitrogen vapour for Wallachian sheep

FILIPP GEORGIJEVIC SAVVULIDI*, MARTIN PTACEK, ANEZKA MALKOVA,

b*EQ = initial percentage of viable sperm after equilibration as covariate; b*EQ(ACR) = initial percentage of sperm with acrosome damage after equilibration as covariate; b*EQ(MTCH) = initial percentage of sperm with deteriorated mitochondrial activity after equilibration as covariate; b*EQ(PM) = initial percentage of sperm with plasma membrane damage after equilibration as covariate; Curve = fixed effect of the freezing curve (1 = Curve 1; 2 = Curve 2; 3 = Curve 3; 4 = Curve 4; 5 = Curve 5); Day = fixed effect of the control day of semen collection; Sire = fixed effect of ram; THW = percentage of viable sperm after thawing; THW(ACR) = percentage of sperm with acrosome damage after thawing; THW(MTCH) = percentage of sperm with deteriorated mitochondrial activity after thawing; THW(PM) = percentage of sperm with plasma membrane damage after thawing

***Significance of particular effects in the model equation at P < 0.001; ^{a-c} different superscripts within columns indicate that the means differ at P < 0.05 level of significance

2. Glycerolation

Figure 3. Influence of GA (glycerolation during the whole equilibration process) vs. GFA (glycerolation 10 min before the freezing procedure) on CASA parameters in Wallachian ram sperm detected immediately after thawing; MOT: total motility; PROG: progressive motility; VCL: curvilinear velocity; VAP: average path velocity; VSL: straight-line velocity; STR: straightness; LIN: linearity; a–b: different letters within particular parameters indicate significant differences at a p < 0.05 level of significance.

CZU.CZ

Czech University of Life Sciences Prague

Communication

MMP_{T1}

MMP_{T2}

 7.16 ± 0.82

 7.49 ± 0.75

X

Glycerol-Free Equilibration with the Addition of Glycerol Shortly before the Freezing Procedure: A Perspective Strategy for Cryopreservation of Wallachian Ram Sperm

Anežka Málková ¹, Filipp Georgijevič Savvulidi ^{1,*}, Martin Ptáček ¹, Karolína Machová ², Martina Janošíková ¹, Szabolcs Nagy ³ and Luděk Stádník ¹

х

Table 2. Significance of factors used in statistical models for flow cytometric parameters.

	GEA (%)	Significanc	Significance of Factors in Statistical Model						
		b ₁₋₂ × EQ	DAY	VAR	DAY × VAR				
а	36.99 ± 1.61 ^b		***	***	***				
а	27.12 ± 0.82 ^b	***	***	***	***				
а	22.55 ± 0.69 ^b	***	***	***	***				
а	20.53 ± 0.63 ^b	***	***	***	***				
а	54.92 ± 1.75 ^b		***	***	***				
а	41.03 ± 1.30 ^b	***	***	*	***				
a	18.97 ± 0.77 ^b	*	***	***	***				
a	11.72 ± 0.71 ^b	***	***	***	***				

3. Thawing curve

Figure 2. Total (TM) and progressive (PM) motility modified thawing protocols compared to the 39 °C/30 s. T0 = results detected immediately after thawing; T2 = results detected reference after 2 h of incubation in a water bath heated at 39 °C; black points with bounded lines indicate LSM values \pm SE for modified thawing protocols; the red line with a grey marked area indicates the reference thawing protocol (LSM \pm SE); * = indicates a significant difference in the modified thawing protocol to the reference thawing protocol at p < 0.05 level of significance.

Article **Effect of Different Thawing Regimes on Cell Kinematics and** Organelle Integrity of Nitrogen-Stored Wallachian Ram Spermatozoa

Martin Ptáček ^{1,*}^D, Filipp Georgijevič Savvulidi ¹^D, Christopher LeBrun ¹^D, Martina Janošíková ¹^D, Temirkhan Kenzhebaev ², Kairly Omashev ², Beybit Kulataev ² and Nurlan Malmakov ²

Quality of cryoconserved sperm

	Total motility (%)	Progressive motility (%)	Viability (%)	Mitochondrial potential (%)
Wallachian sheep	10.3	6.0	17.2	8.3
Sumava sheep	14.0	7.8	16.8	9.1
Czech white-short haired goat	24.1	19.1	32.3	33.8
Czech brown-short haired goat	22.6	17.6	30.1	31.3
		(Interim result	s from screen	ing sperm analyses)

Czech University of Life Sciences Prague

Dye-exclusion assays

A number of fluorescent dyes are used for flow cytometry determination of sperm viability in livestock species

- \blacktriangleright Dye-exclusion assays with propidium iodide (PI)
- Classic interpretation: PI penetrates cells only through damaged plasma membranes
- ➢ But...

Czech University of Life Sciences Prague

Pannexin channels!

...But previous studies show that pannexin channels increase PI uptake in frozen-thawed dog spermatozoa (Torres et al. 2017)

Suggesting that the estimated percentage of PI-positive spermatozoa used as an indicator of non-viable cells may lead to their overestimation. Pannexins are proteins that form functional membrane channels, but they have not yet been described in ovine.

CSIRO PUBLISHING

Reproduction, Fertility and Development, 2017, 29, 2269-2276 https://doi.org/10.1071/RD16267

Pannexin channels increase propidium iodide permeability in frozen-thawed dog spermatozoa

J. L. Torres^B, J. Palomino^A, R. D. Moreno^B and M. De los Reyes^{A,C}

[^]Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Casilla 2, Correo 14, La Granja, Santiago, Chile. ^BPhysiology Department, Biological Sciences Faculty, Pontifical Catholic University of Chile,

Alameda 340, Santiago, Chile.

Corresponding author. Email: mdlreyes@uchile.cl

Original research on the pannexin channels and ovine sperm

In our recent research, we aimed at the:

> Evaluation of the role of pannexins in PI uptake by frozen-thawed Wallachian ram spermatozoa

Czech University of Life Sciences Prague

MM: graphical representation of the hypothesis

Czech University of Life Sciences Prague

PBD - Probenecid

MM: PI-exclusion assay by flow cytometry

Czech University of Life Sciences Prague

Results: Pannexin channels played an active role in the process of PI uptake in frozen-thawed ram spermatozoa

Czech University of Life Sciences Prague

Figure 1. PI uptake as measured by flow cytometry. Values with the different notifications (a-d intra-ram differences; 1-2 ram-to-ram differences) indicate significant differences at p < 0.05 level of significance

Conclusion: PI-exclusion assay: a non-0 % chance of detecting false positives

> According to our results, the PI assay has a 6 % false positivity using flow cytometry (p < 0.05)

> Folia Biol (Praha). 2023;69(4):127-132. doi: 10.14

A Pilot Study on the Uptake YO-PRO-1 Iodide through Wallachian Frozen-Thawe

Filipp Georgijevič Savvulidi¹, Martin Ptáček¹, Ane Martina Janošíková¹, Szabolcs Nagy³, João Pedro Karina Savvulidi Vargová⁵

Affiliations + expand PMID: 38410970 DOI: 10.14712/fb202306904012 Free article

Czech University of Life Sciences Prague

		Search
		User Guide
Save Email	Send to	Display options 🌣
712/fb2023069040127.	FULL T	EXT LINKS
e of Propidium Iodide and the Pannexin Channels in d Pam Spormatorea	ACTIO	full text article a Biologica
ežka Málková ¹ , Elena Golovina ² , Jan Pytlík ¹ , o Barbas ⁴ , Luděk Stádník ¹ ,	"	Cite Collections
7	SHARE	
	X	f

4. Laparoscopic Al

Contents lists available at ScienceDirect

Saudi Journal of Biological Sciences

journal homepage: www.sciencedirect.com

Original article

Optimal time for laparoscopic intrauterine insemination performed on ewes detected in natural heat

Nurlan Malmakov^a, Martin Ptacek^b, Filipp Georgijevic Savvulidi^{b,*}, Ludek Stadnik^b

^a Department of Sheep and Goat Artificial Insemination and Sperm Cryoconservation, Scientific Research Institute of Sheep Breeding Branch, Mynbaev, Almaty Region 040622. Kazakhstan ^b Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00 Prague, Suchdol, Czech Republic

Czech University of Life Sciences Prague

CZU.CZ

The Welfare of Sheep

4. Intra-cervical AI

Czech University of Life Sciences Prague

4. (Trans-cervical AI)

Czech University of Life Sciences Prague

Sheep cervix penetration: 40 – 60 %

4. Synchro-program

Czech University of Life Sciences Prague

Heat synchroniztion for ICI

- Insert sponges (T+)
- Remove sponges (T-)
- + 300 500 IU eCG (PMSG) application
- Expected time of sheep/goat ovultion: 48 72 hrs. from T-
- Double ICI at 54/58 hrs. from T-

First field trial: intra-cervical double-Al 37

European Regional Focal Point for Animal Genetic Resources

The Research School, Swedish University of Agricultural Sciences

Thank you for your attention

Czech University of Life Sciences Prague

Martin Ptáček Lucie Langerová

SLU

savvulidi@af.czu.cz

For your interest

Special Issue

Sperm Preservation and Sexing Technologies in Largeand Small-Ruminant Reproduction: Current Status and Future Perspectives

Czech University of Life Sciences Prague

czu.cz

Guest Editors Dr. Filipp Savvulidi Dr. Martin Ptáček

Deadline 15 February 2026

Czech University of Life Sciences Prague

ByTech

University spin-off Est. 2025

University full of life

09/06/25