

National Centre for Biodiversity and Gene Conservation -Institute for Farm Animal Gene Conservation

NBGK-HGI GENEBANK

Krisztina Liptói

National Centre for Biodiversity and Gene Conservation Institute for Farm Animal Gene Conservation

Foundation: 1897

- Poultry and honey bee breeding, research as well as education
- Gene conservation from: 2010
- Current form: 2019
 - Non profit, public body

National Centre for Biodiversity and Gene Conservation Institute for Farm Animal Gene Conservation

Departments

- Department for Gene Conservation
- Department for Small Animal Research and Gene Conservation
 Biology
- Department for Apiculture and Bee Biology
- Department for Aquatic Genetic Resources Conservation

In vivo poultry gene bank since 1997

In vivo mammalian nucleus populations since 2010

Gene conservation of indigenous farm fish species from 2015

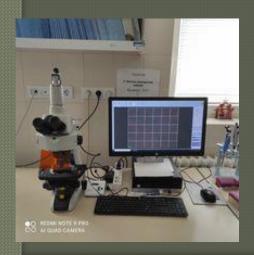
Genetic investigation of Hungarian dog breeds – model program

Horse model programs

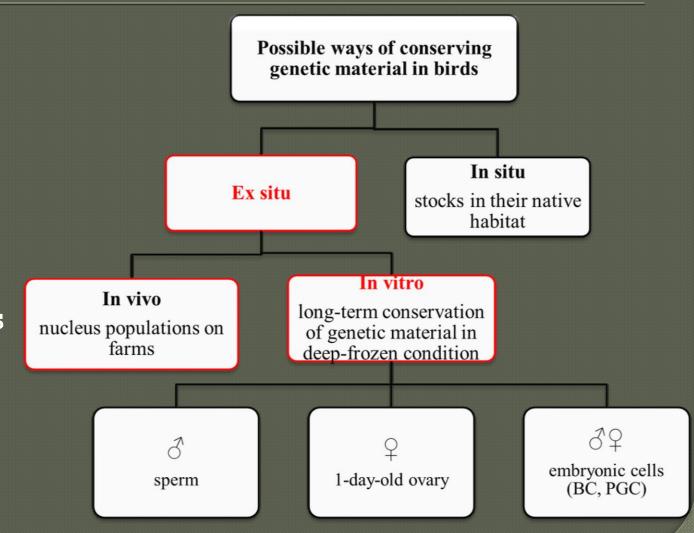

Gene conservation of honey bee since 2021

Gene conservation

- In vivo poultry and waterfowl gene bank with all Hungarian indigenous and old poultry species and breeds
- In vitro poultry sperm cryobank, which is extend with storage of PG (and blastodermal) cells and gonadal tissues
 - DNA bank
- Nucleus populations of indigenous cattle, goat and sheep as well as Hungarian Giant Rabbit
 - DNA bank
- In vivo and in vitro honey bee gene bank is under construction for Pannon bee, as the Hungarian variety of Carniolan honey bee
- Tench and Crucian Carp in vivo and in vitro gene conservation
- DNA bank and in vitro gene bank of Hungarian dog breeds.


2013: In vitro genebank in NBGK-HGI

- Preservation of the indigenous farm animal genetic resources
 - Applying effective methods for cryopreservation
 - Developing effective methods for recovery the genetic material
 - Investigations of the pathogen decontamination of the samples



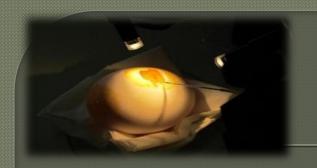
In vitro gene conservation in poultry

- Female: ZW
- Male: ZZ
- Possibilities of in vitro gene conservation:
 - Sperm bank males
 - Tissue bank females / males
 - Embryonic cell bank females
 / males
- Cryopreservation of eggs and embryos is not possible


Conservable avian genetic material	Challenges	Current cryopreserved samples		
Sperm cells	- FAO Protocols are only for domestic fowl	 850 straw / breed - 5950 straw core collection 200 samples- work collection 		
Gonadal tissue	 Female is heterogametic in avian species Oocyte and embryo cannot be frozen Ovarian tissue of day-old chick can be frozen Forming suitable donor/recipient pairs Developing species-specific techniques 	- 454 sample core collection		
Primordial germ cells	 Starting and maintaining cell lines Creation of sterile recipients Increasing the efficiency 	-1034 PGC samples - 517 - 517 samples core and work collection		
DNA, tissue		- 12000		

In vitro gene conservation of honey bee

- Adaptation and application of the method of artificial insemination of queen bees.
- Development and improvement of methods for in vitro sperm storage.



Preserved genetic materials

Species	Number of breeds	TYPE OF SAMPLES						
		sperm	pgc	gonadal tissue	DNA	blood	somatic tissue	
Chicken	7	6585	1034	454	520	4818		
Turkey	2	642			128	164		
Guinea fowl	1	348			62	62		
Goose	2	305		11 work s.	128	164		
Duck	2	667			128	164		
Honey bee	1	151			501		800	
Rabbit	1						121	
Sheep	4				59	431		
Cattle	2				18	66		
Horse	3				96	96		
Dog	9	709			229	861		
11	34	9407	1034	465	1869	6826	921	

Research

- Genetics and Reproductive Biology
 - Laboratory of Genetics
 - Laboratory of *In Vitro* Gene Conservation and Reproductive Biology
- Animal Nutrition
 - Laboratory of Animal Nutrition
- Honey bee breeding
 - Laboratory for investiation of apiculture products
 - Laboratory of Reproductive Biology

Research

BASIC AND APPLIED RESEARCHES

- Collection of indigenous, local species and breeds
- Creation of in vivo gene banks
 - Molecular genetics
 - Genetic diversity
 - Genetic origin
- Developement of In vitro gene conservation methodology
 - Cryopreservation of
 - sperm
 - Bc, PGc
 - Gonadal tissue
- Possibilities for active use of indigenous animals
 - crossing

- Investigation of reproductive traits
 - Genetic and technological basis
 - Reproductive biology investigations
 - sperm, egg, embryo
- Investigations on avoiding negative effect of climate change
- Developement of GMO free poultry feed
- Apiculture investigations
 - Apiculture products
 - Breed characteristics
 - Honey bee heath
 - Pollen and bee pasture
 - Bee toxicity tests

Methods for Cryopreservation of Guinea Fowl Sperm

Éva Váradi*, Barbara Végi, Krisztina Liptói, Judit Barn

Institute for Small Animal Research and Co-ordination Centre for Gene Conservation, G

Contents lists available at ScienceDirect Animal Reproduction Science

Authors

Csaba k

Date: Jui

Volume 100, Issue 8, August 2021, 101207

Successful cryopreservation and regeneration of a partridge colored Hungarian native chicken breed using primordial germ cells

Poultry Science

Bence Lázár *, † 🗷 🖼, Mariann Molnár *, Nikoletta Sztán *, Barbara Végi *, Árpád Drobnyák *, Roland Tóth †, Nikolett Tokodyné Szabadi †, Michael J. McGrew ‡, Elen Gócza †, Eszter Patakiné

Taylor & Francis

Acta Veterinaria Hungarica

Volume/Issue: Volume 67: Issue 2


Cryopreservation of gander semen in cryovials -Comparative study

Avian Pathology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cavp20

Mycoplasma species in the male reproductive organs and the fresh and frozen semen of the Hungarian native goose

RESEARCH ARTICLE

Gene conservation of six Hungarian local chicken breeds maintained in small populations over time

Nora Palinkas-Bodzsar 610 **, Nikoletta Sztan **, Tamas Molnar **, Andras Hidas **, Andras Hidas **, Tamas Molnar **, Andras Hidas **, Tamas Molnar **, Andras Hidas **, Tamas Molnar **, Tamas Molnar **, Andras Hidas **, Tamas Molnar **, Tamas M

1 National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation,

FAO 2022: INNOVATIONS IN CRYOCONSERVATION OF

ANIMAL GENETIC RESOURCES

https://www.fao.org/fileadmin/user_upload/animal_genet ics/docs/CGRFA-18-21-10_2_Infl_forPDF.pdf

More important research cooperations on gene conservation

- 2017-2021. VEKOP-2.3.2-16-2016-00012 Génnet 21: Scientific foundation and development of gene bank strategy of Charpatian Basin farm animal species, breeds and ecotypes for XXI century
- © **2016-2020.** Horizon 2020 SFS 7B-2015: 677353- IMAGE Innovative Management of Genetic Resources
- 2014-2016. AGR_PIAC_13-1-2013-003: Development of indigenous small animal breeding
- 2013-2016. KTIA: Introduction of alternative biotechnological methods for the development of the Hungarian in vitro poultry and rabbit gene bank
- 2010-2013. TET_09_FR_ANR_BIO-CryoBird: Development and application of biotechnological methods in poultry reproductive biology for the conservation of genetic diversity
- 2007-2009. TÉT Development of cryopreservation methods of reproductive cells for the management of genetic diversity in native poultry breeds (waterfowl, chicken, and guinea fowl) in France and Hungary

Future

- National Farm Animal in vitro Genebank
 - Samples of all Hungarian indigenous farm animal species and breeds
 - Reproductive materials
 - DNA and tissues

European Genebank Network for Animal Genetic Resources

- Increasing of the "visibility" of our genebank
- Increasing the network of contacts
 - Sharing good practices
 - Animal health conditions (germinatively transmitted infections / pathogenes)
 - Improving genebank management
 - Common projects, etc.

Thank you for your attention!

www.nbgk.hu