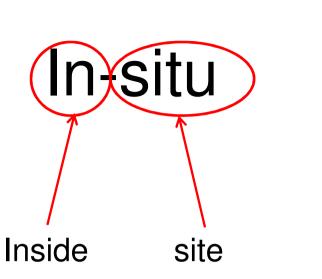
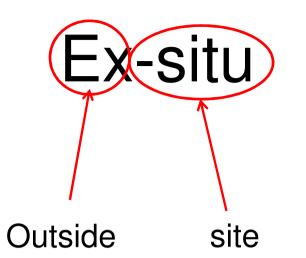
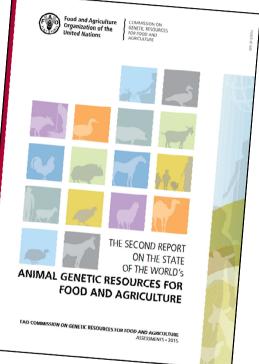
MAGE


Optimizing *ex situ* genetic resource collections for livestock conservation

Rafael Silva, GAAFS, The University of Edinburgh


Rafael.silva@ed.ac.uk

- National parks
- Nature reserves
- Marine parks


- Captive breeding zoos
- Botanic gardens
- Cryogenic banks (seeds, semen, embryos)

VS

Context and challenge

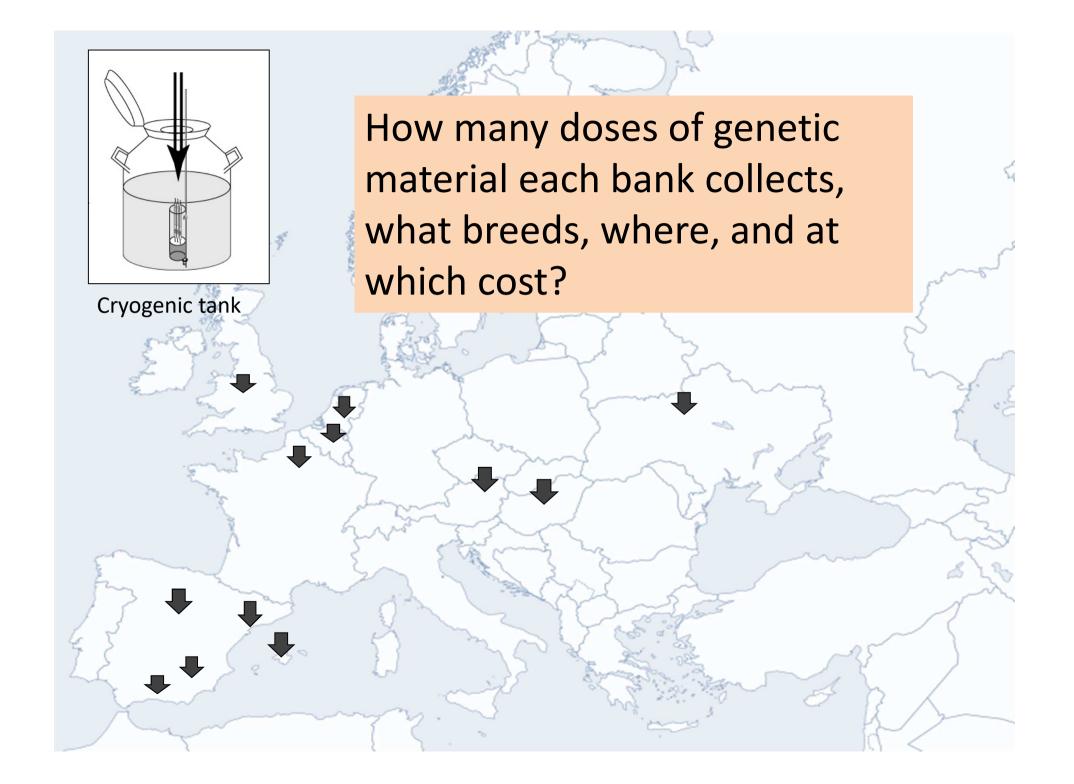
- Challenges to *in situ* resource conservation, climate change and homogenisation of breeds.
- Increasing interest in monitoring breed status *in* and *ex situ*.
- Considerable focus on efficiency of *in situ* biodiversity conservation – by optimization algorithms

 We identify gap in harmonisation of *ex situ* <u>livestock</u> collections: genomic (e.g. DNA, blood, tissue) and reproductive germplasm (e.g. semen, embryos).

Context and challenge

Ex situ conservation is costly

The main limitation is the need for special equipment, techniques and trained staff



Research objective

To identifying economically fficient "rationalisation" of cryogenic efficient "rationalisation" of ex situ conservation) under limited resources scenarios for EU.

Data and method

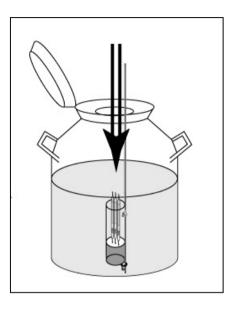
- A Mixed-Integer Programming model developed to:
 - Estimate the cost of current breed allocation across the EU
 - Identify overlapping breed conservation

IMAGE


- Identify the optimal breed collection/storage in the cryobanks at minimum cost
- Data collected by survey of gene bank cost and holdings (surveys conducted in 2017)

Optimisation model

- The model finds the most cost-effective collection and storing strategy allowing cross-country collection.
- Some of the constraints are: regional availability of breed, collection costs, distance from banks to collection region and capacity of cryogenic tanks.
- The model tells us how many doses of livestock breed each bank should collect and when costs are minimised.



Minimum cost scenarios:

- Unconstraint capacity (S_UC): all the 11 banks have unlimited capacity (in number of doses).
- Constrained capacity (**S_C50**): All 11 banks are currently operating on 50% of full capacity.
- Centralized gene bank scenarios: S_B1, S_B2,..., S_B10. Where S_Bi represents a scenario of centralizing all breeds collection/storage in bank *i*.

Maximum diversity scenarios:

Constrained to limited EU-budget

🛄 Data Survey administered to 12 selected cryogenic banks across Europe.

- Technical coefficients and costs: online cost survey (Vosough Ahmadi et al. in prep):
- Costs of semen freezing, labour, documentation and collection costs, costs of skilled labour, materials and equipment.
- Information on breeds current germplasm conservation (semen straw/doses) (Passemard et al. 2018) https://www.surveymonkey.co.uk/r/XGQ9KB6

DataTable 2.Capacitie

Table 2. Input Data Used in the Model Including the Cost Parameters, Tank Capacities and Distances.

				Doses		
		Maintenance	Tanks	currently		Distance to
		cost,mc _{gb}	capacity ^a , C _{gb}	stored, $\Sigma_b A_{b,gb}$	Travel costs,	farm zones,
Gene banks	Location	(EUR.dose ⁻¹)	(doses)	(doses)	tc_{gb} (EUR.km ⁻¹)	d _{gb} (km)
B1 (TFNC)	Paris, France	0.51	607776	1215552	2.5	200
B2 (INIA)	Madrid, Spain	1.50	75710	151420	2.5	300
B3 (CERSYRA)	Valdepenas, Spain	1.28	88120	176240	2.5	200
B4 (AUB)	Bellaterra, Spain	22.65	10946	21892	2.5	200
B5 (HAGK)	Godollo, Hungary	22.27	4124	8248	2.5	200
B6 (AREC)	Thalheim, Gemany	1.70	435174	870348	2.5	100
B7 (CGN)	Wageningen, Netherlands	0.47	664114	1328228	2.5	100
B8 (SEMILLA)	P. de Mallorca, Spain	3.23	30148	60296	2.5	100
B9 (UCLouvain)	Louvain-la-N, Belgium	10.31	NI ^b	NI	2.5	100
B10 (RBST)	Kenilworth, UK	0.54	551944	1103888	2.5	500
B11 (IABG)	Kiev, Ukraine	0.83	292602	585204	2.5	100
B12 (IMIDRA)	Colmenar V., Spain	0.82	335732	671464	2.5	200

IMAGE

Breed allocation: which breeds are currently stored¹ in EU cryogenic banks² and where?

Gene Banks B1 (TFNC) B2 (INIA) B3 (CERSYRA) B4 (AUB) B5 (HAGK) B6 (AREC) B7 (CGN) B8 (SEMILLA) B9 (UCLouvain) B10 (RBST) B11 (IABG) B12 (IMIDRA)

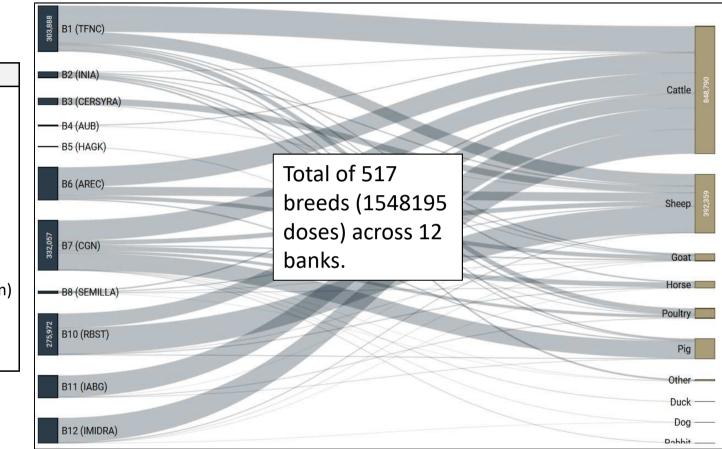
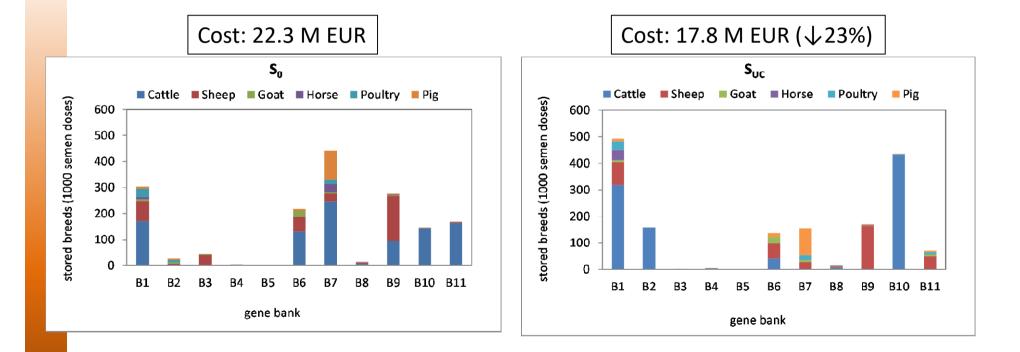


Figure 1: Number of doses in each bank (left) according to species (right) of current breed conservation. ¹ Data provided by Anne-Sophie Passemard from the IMAGE survey on genetic collections in Europe (2017). ²The 12 cryogenic banks chosen as they provided complete cost data in our cost survey (2017).

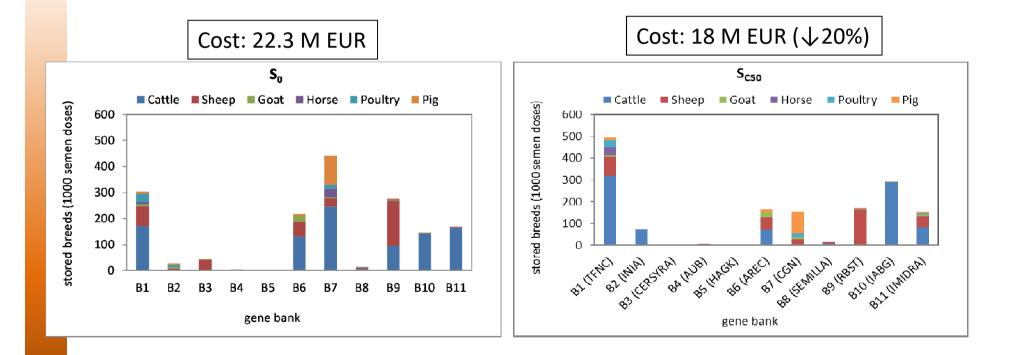
Is the current breed allocation optimal? Are there overlapping collections?


Table 1: Number of semen doses of overlapping breeds across the 12 gene banks.

Breed	B1 (TFNC)	B2 (INIA)	B3 (CERSYRA)	B6 (AREC)	B7 (CGN)	B10 (RBST)	B11 (IABG)	B12 (IMIDRA)	Total
Cattle - Belgian Blue				1150	375				1525
Cattle - Blonde D'aquitaine	9670			350	75		770	50	10915
Cattle - Brown Swiss				15344	87				15431
Cattle - Charolaise	11600			672			1649	4396	18317
Cattle - Galloway				100		711			811
Cattle - Hereford						486	2000		2486
Cattle - Holstein					29507		36040		65547
Cattle - Jersey					100		1050		1150
Cattle - Limousine	7000			1650			3539	2447	14636
Cattle - Montbeliard	21100			92	75		218		21485
Cattle - Piedmont				100	25		3000		3125
Cattle - Simmental				86200	25		16914		103139
Goat - Murciano Granadina			1337					43	1380
Goat - Saanen	923				75				998
Pig - Duroc	287				2378				2665
Pig - Landrace	298			200					498
Pig - Large White				134		250			384
Pig - Pietrain				602	7033				7635
Sheep - Manchega		725	39794					3043	43562
Sheep - Romaney	2534					2402			4936
Sheep - Suffolk	5509					7434			12943

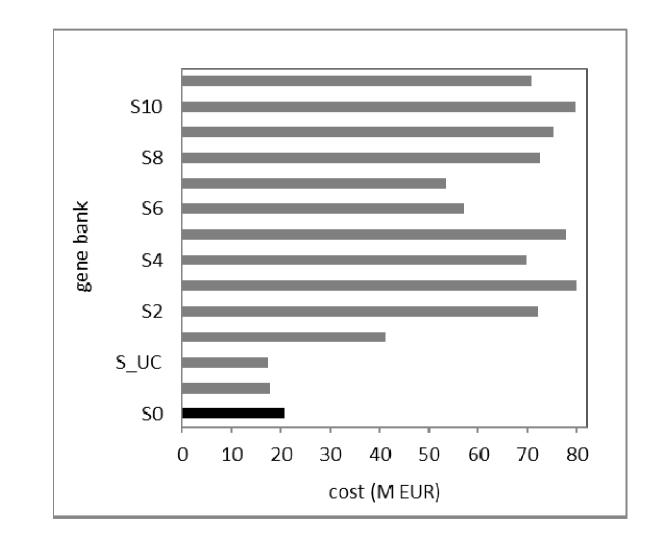
Optimisation model

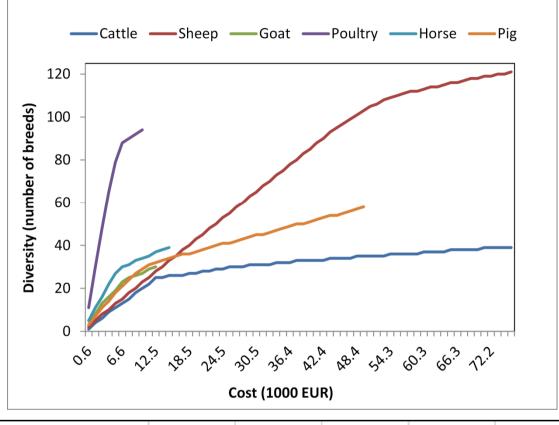
Current breed conservation Vs Optimal (S_UC)


MAGE

Optimisation model

Current breed conservation Vs Optimal (S_U50)


MAGE


Alternative scenarios (EU Single bank)

IMAGE

Diversity vs EU-budget for breed conservation

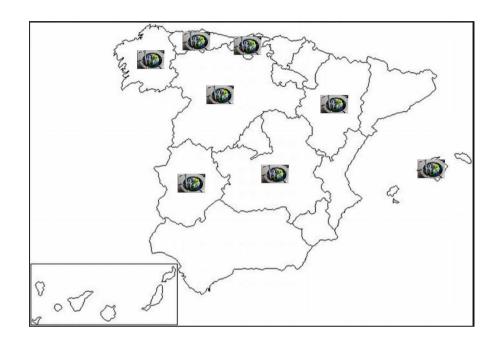
Costs (EUR/breed)	Cattle	Sheep	Goat	Poultry	Horse
Lower cost	449	300	200	55	120
Upper cost	2531	627	418	108	383

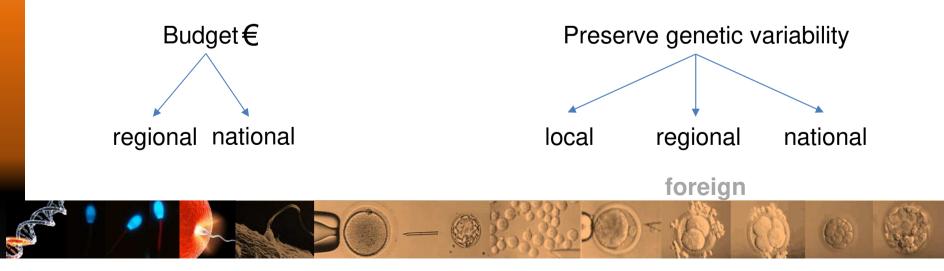
Figure 6: Sensitivity analysis of diversity as a function of collective EU budget for livestock breeds.

Conclusions

- Costly overlaps in the current allocation across the 12 banks analysed, specifically cattle and sheep.
- Model results suggest a potential for cost saving across European cryogenic banks by strategic collection and conservation planning.
- Centralizing breed conservation would significantly increase *ex situ* conservation costs.
- Costs per conserved breed varies depending on targeted diversity, i.e., higher diversity targets (in number of breeds) means higher costs per breed.
- Breed and gene bank selection clearly involves numerous biotechnological, institutional and economic challenges that can be informed by mathematical modelling of cost-effective breed conservation.

IMAGE


Further steps


- Refine the collected data (costs and capacity).
- Include alternative breeds that are currently not conserved in the gene banks.
- Include embryo collection.
- Explore scenarios of economic returns associated with breed conservation by adding weights/rank of each breed based on their various attributes.
- Cost analysis of targeted conservation for endangered breeds.

IMAGE

Spanish genebanks network

IMAGE Spanish genebanks network 400) -_ 612.3 0 0 7 m

National Genebank

- Ministry of Agriculture
- Close
- Preserve autochtonous breeds

Spanish genebanks data collection

Survey

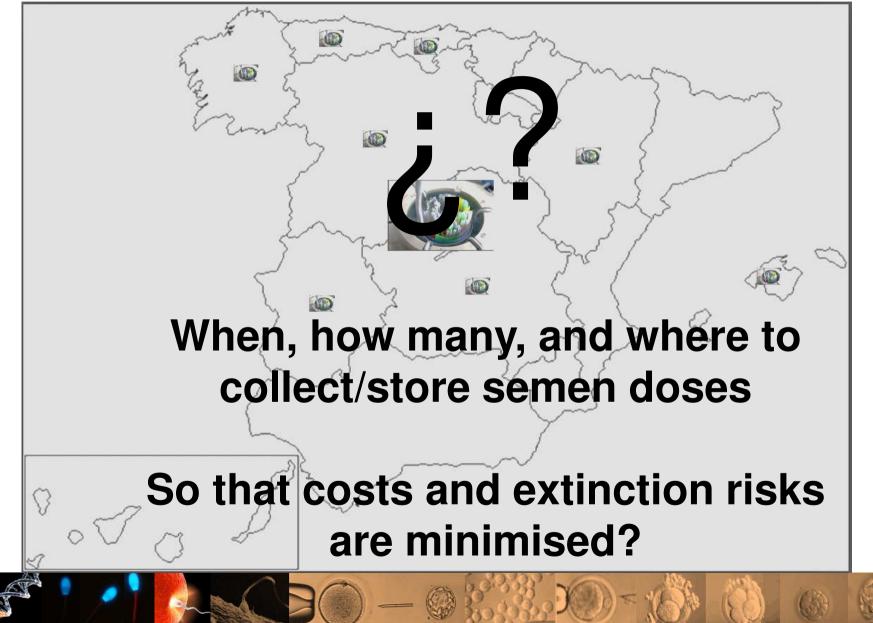
Costs

Capacity

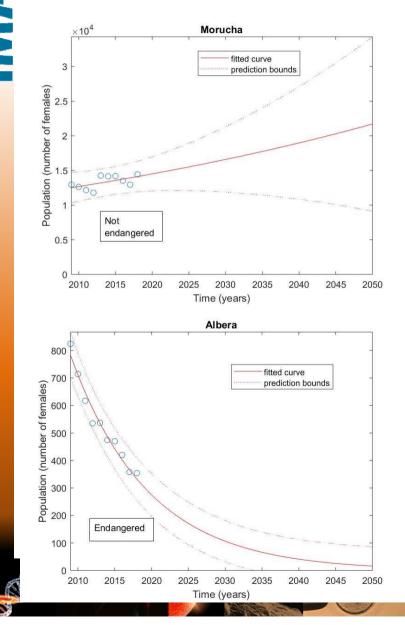
- Staff
- Sample Collection
- Maintenance

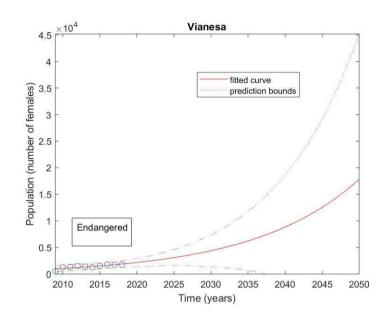
- Tanks
- Tanks capacity
- Collect new samples

Breeds


- Semen/Embryo
- How much
- Donors

Breeds Census since 2009 to 2018


- Females/Males registered each year
- Breeders
- Cattle, sheep, pig, goat, horse, chickens



Optimising ex situ collections using in situ data: when to collect?

- Collecting under uncertainty bounds
- Identifying trade-offs
 (cost vs extinction risk)

Acknowledgements

The research was conducted as part of:

- The IMAGE (Innovative Management of Animal Genetic Resources) project; the European Union's Horizon 2020 research and innovation program under grant agreement No 677353; and
- The Scottish Government's Strategic Research Programme 2016-2021 (2.3 Agricultural Systems and Land Management).

