

Native Breeds at Risk confusion or standardisation?

Lawrence Alderson lawrence@clltd.demon.co.uk

Confusion!

Pejorative word –

is it justified?

Does the current situation –

- establish reasonable and effective thresholds?
- allow sensible and consistent decision-making?
- enable stakeholders to develop optimum policy and programmes?

Confusion!

- Pigs: EU 15,000 sows; FAO 1,000 sows
- **Poultry:** EU 22,500 hens; FAO 1,000 hens

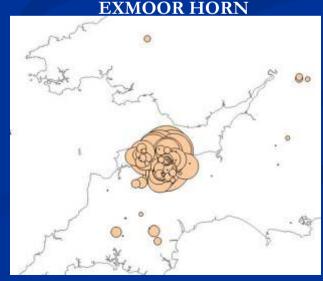
Rationale for EU thresholds -

- numerical (N_e) determines inbreeding and possibility of extinction in 50 years
- no allowance for other relevant factors trends,
 reproductive rate, geographical, etc
- Seminar in London (February 2010) to resolve the problems

Standardisation

Conservation of FAnGR: four steps:

- Basic definitions what is a (native) breed?
- <u>Indicators of Endangerment</u> which breeds are at risk?
- Factors of Prioritisation which to support?
- Management of Breeds at Risk policies and programmes of management are subject to national decisions


Indicators of Endangerment

Two essential primary indicators -

- Numerical
- size of population

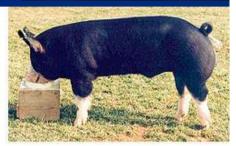
- Geographical
- range or distribution

Indicators of Endangerment

Two modifying primary indicators -

- Genetic (genetic erosion; loss of alleles) modifying
- Introgression (threatens breed integrity) precursor (i.e. when is a breed not a breed?)
- Other dangers are <u>causal</u> (they influence primary indicators) -
- Demographic number/age of owners, etc
- Changing marketplace, disease threats

Numerical


Questions:

- Population only in country of origin
- Registered animals or all animals

Options:

- Effective population size $-N_e$ 50 = 1% p gen
- No. of breeding females commonly used
- No. of <u>female replacements</u> best measure of health of breed (ideally with 3-year rolling average)

Numerical

Pragmatic Option:

- No. of breeding females commonly used
- Starting point: FAO criteria (100 / 1000), plus
- modify with extra warning threshold
- vary according to species to allow for differences in:
- ~ generation interval
- ~ mating ratio / number of breeding units
- ~ reproductive rate

Numerical

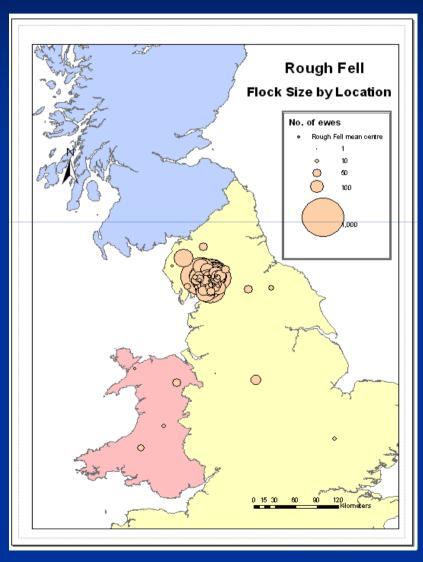
■ Thresholds for standardisation – developed from FAO criteria

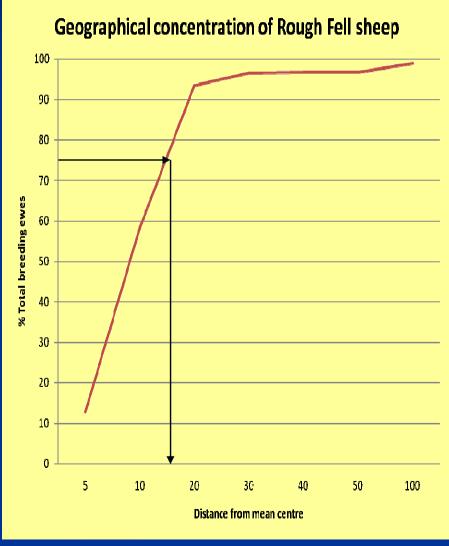
number of females of breeding age

<u>Category</u>	Cattle	Sheep	Goats	Equines	<u>Pigs</u>	Poultry
1	150	300	300	200	100	100
2	1500	3000	3000	2000	1000	1000
3	3000	6000	6000	4000	2000	2000

Geographical

Value of native adaptation threat from disease outbreaks


Procedure:


developed in the UK by the Univ of Worcs and CLL; based on GIS and herd/flock data

Criterion:

geographical concentration: >75% population found within 50 km of the (MWC) mean weighted centre of the breed

Rough Fell sheep

Example Breeds – UK sheep

Boreray

- **221** breeding ewes; 180 km radius
- Numerically at risk (1)
- Not threatened geographically

Rough Fell

- <u>15134</u> breeding ewes; <u>15 km</u> radius
- Not threatened numerically
- Geographically at risk (2)

Genetic

Genetic erosion – most severe in small populations and those with an acute hierarchical breed structure

Small populations

■ <u>Traditional Hereford</u> loss of 18% alleles from 1960s to 1990s

■ <u>Vaynol cattle</u>: (N_e 3.8); homozygous 7/16 markers

Inbred populations -

- <u>TB horses</u> (CGI 28.15)
- Holstein cattle (N_e <100), O-Man effect

Genetic

Inbreeding:

■ Threshold: rate of inbreeding of 1% per generation (N_e 50)

Introgression:

■ Threshold: introgression of 2.5% in any generation (12.5% critical threshold – effectively a new breed)

Threshold for Indicators of Endangerment

The threshold acts to identify 'breeds at risk'

Category	Numerical: breeding females"	Geographical: concentration^ km	Genetic: inbreeding* %	Genetic: introgression %
3	<2000-6000	<50	>1	>2.5

[&]quot;varies according to species

[^] radius of circle containing 75% of the breed

^{*} rate of inbreeding per generation

Prioritisation

determined by <u>Probability of Extinction</u> and categorisation of indicators of endangerment

Category	Numerical: breeding females	Geographical: concentration^ km	Genetic: inbreeding * %	Genetic: introgression %
1	<100-300	<12.5	>3	>12.5
2	<1000-3000	<25	>2	>7.5
3	<2000-6000	<50	>1	>2.5

[&]quot; varies according to species

[^] radius of circle containing 75% of the breed

^{*} rate of inbreeding per generation

Other Factors of Prioritisation

Loss of genetic diversity

 measured by various applications of population genetics and/or molecular genetics


Other factors

- distinctive traits commercial, behavioural
- socio-ecological cultural, landscape
- catastrophic events

Genetic Diversity

Genetic distance

White Park cattle (distinctiveness and heterosis benefit)

Between-breed v within-breed diversity

■ PigBioDiv1 – Basque (highest 'between' and lowest 'within')

Core set of breeds

Breeds ranked by contribution to extra diversity

Local Breeds

Special traits:

- Local adaptation (N'dama and North Ronaldsay)
- Product quality
- ~ White Park beef Sir Loin
- ~ Basque pig Oteiza business

- Landscape management conservation grazing
- **Undesirable traits**: VRQ scrapie allele
- Historical value (many native breeds):
- Local tradition and history
- Tourism and local crafts

Factors of Prioritisation

Take all factors into account

- Probability of extinction essential
- Genetic diversity across species (maybe based on index of between- and within-breed diversity)
 modifying
- Special traits of local breeds modifying

Standardisation in Europe

Breed definitions

standardisation possible and agreed

Indicators of endangerment

standardisation possible and recommended

Factors of prioritisation

 standardisation possible but further clarification required on some details

Lawrence Alderson

lawrence@clltd.demon.co.uk www.lawrencealderson.com