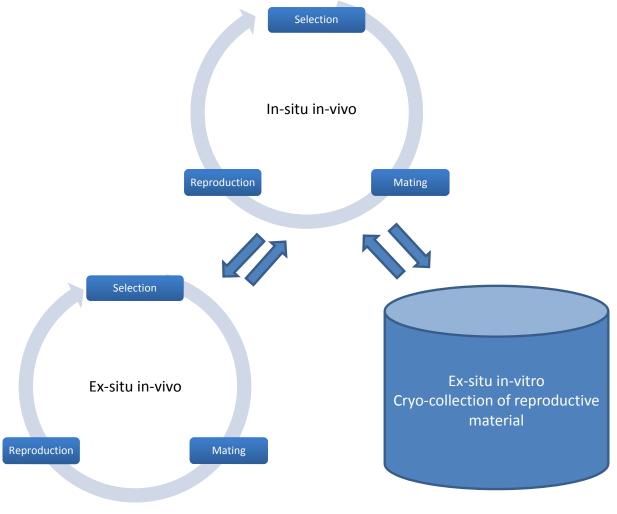
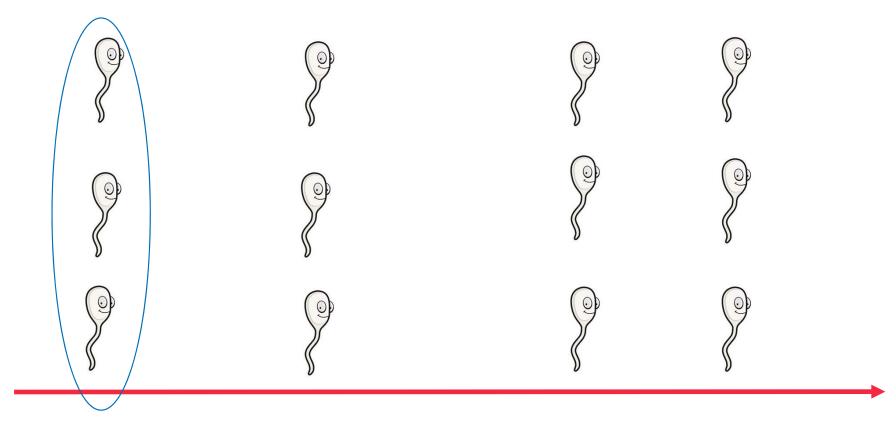
Genebanks in the genomics era

Peer Berg

What is a genebank?

- Cryo-conserved reproductive material
 - ☐ Long-term storage
 - ☐ Semen and embryoes
 - □ Technology
 - Species




Role of genebanks

- ☐ Long-term storage
- Back-up
- ☐ Supplementary to in-situ
- ☐ Population management
- ☐ Document genetic progress
- **□** Research

Role of genebanks

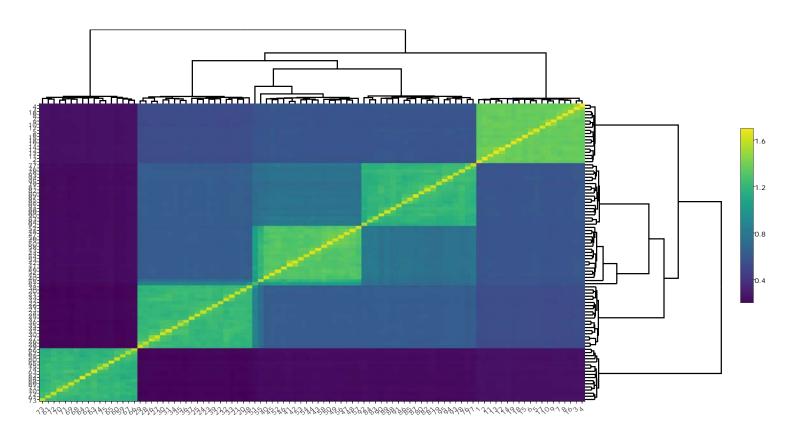
Time

Added value of genomic information

- Inventory
- Maintaining specific alleles/haplotypes
- Sampling animals for cryo-conservation
- Use of genebank samples
- Research
- More efficient introgression

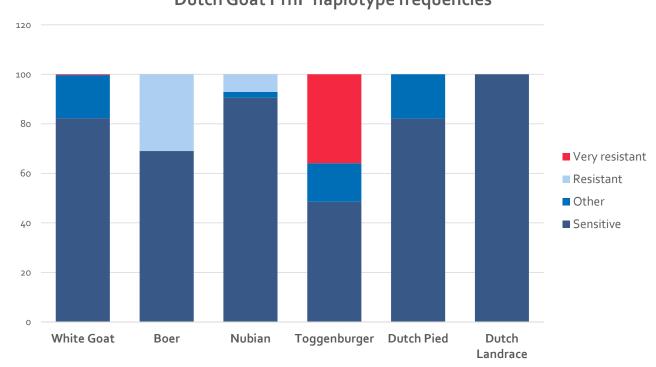
More detailed inventory

- ☐ Genomic vs. pedigree relationships
 - Within breeds
 - Between breeds
- Specific alleles or haplotypes
 - ☐ E.g. Halothane sensitivity allele
 - ☐ E.g. PrnP haplotypes



Lourenco et al. 2015

Expected relationship


Genomic relationships 5 Norwegian poultry breeds

PrnP haplotypes in Dutch goats

Modified from Windig et al. 2016

FAO recommendations

FIGURE 3

Population reconstitution with cryoconserved semen

FAO 2012

TABLE 7

Number of semen doses required to reconstitute a breed of cattle, small ruminant or horse

Founder females (N)	Pregnancy rate					
	0.4	0.5	0.6	0.7		
75	*		449 (26)	460 (37)		
100		564 (22)	599 (35)	615 (49)		
150	771 (17)	846 (33)	897 (53)			
200	1 029 (23)	1 128 (44)		•••		
250	1 287 (29)	1 410 (55)		•••		
300	1 544 (34)		•••			
350	1 800 (40)			•••		
400	2 058 (46)			•••		

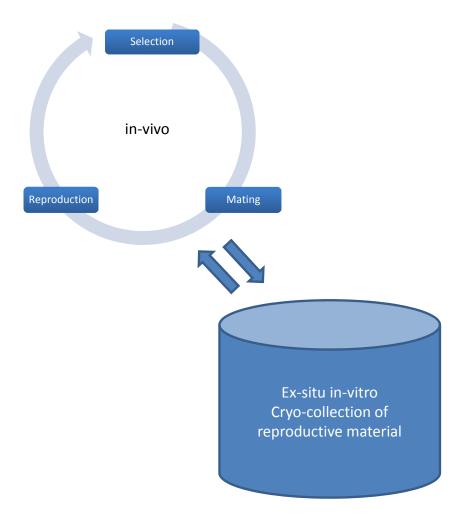
Note: The figures in parenthesis show the effective population size of the reconstituted population. The quantity of semen is calculated at the 150 percent level (see main text for explanation).

TABLE 8

Number of doses per male required to reconstitute a breed of cattle, small ruminant or horse

Founder	Pregnancy rate											
females - (N)	0.4 Males (N)		0.5 Males (N)		0.6 Males (N)			0.7 Males (N)				
	25	50	100	25	50	100	25	50	100	25	50	100
75							18	9	5	19	10	5
100				23	12	6	24	12	6	25	13	7
150	31	16	8	34	17	9	36	18	9			
200	42	21	11	46	23	12		•••				
250	52	26	13	57	29	15		•••	•••			
300	62	31	16	***	•••		•••	•••	•••			
350	72	36	18									
400	83	42	21									•••

Note: Quantity of semen is calculated at the 150 percent level (see main text for explanation).

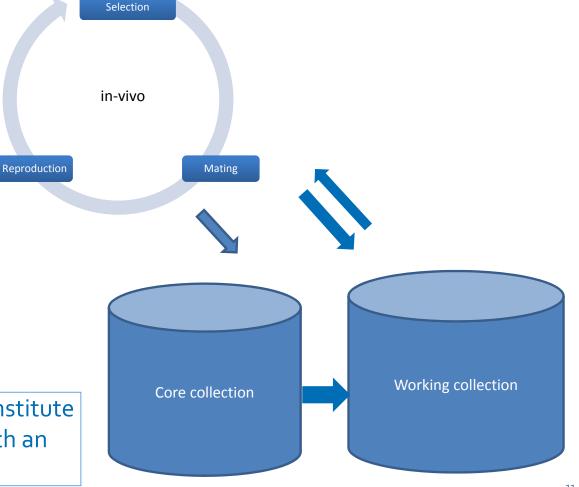

^{*} Missing values indicate that results are not practical, resulting in either too few (upper-left corner) or too many (lower-right corner) animals or requiring large quantities of semen.

Selecting animals for cryo-conservation

- ☐ Maximise diversity in cryo-collection
- ☐ Minimise relationships between donors

$$\bar{r} = c'Hc$$

- Subject to constraints
 - ☐ Non-negative contributions
 - Maximum contributions
 - Sum of contributions


Using samples from cryo-collections

- Maximise diversity in cryo-collection
- ☐ Minimise relationships between donors

$$\bar{r} = c'Hc$$

- **□** Subject to constraints
 - ☐ Non-negative contributions
 - Maximum contributions
 - ☐ Sum of contributions

Collection to reconstitute a population with an Ne of 50

International conservation value

Norwegian poultry breeds

Set	Genetic Diversity	% lost	Priority
Synbreed + NO breeds	0.5299	-	
Jærhøns lost	0.5287	0.22	4
Rokohøns lost	0.5287	0.23	3
NorBrid 1 lost	0.5249	0.94	2
NorBrid 4 lost	0.5290	0.17	5
Norbrid 8 lost	0.5149	2.84	1

Research

- Genomic selection
- Deleterious alleles with pleiotropic effects
 - ☐ E.g. Halothane sensitive alleles
- Historical information
 - ☐ Effects of selection
 - Extreme genotypes
 - ☐ Links to phenotypic information

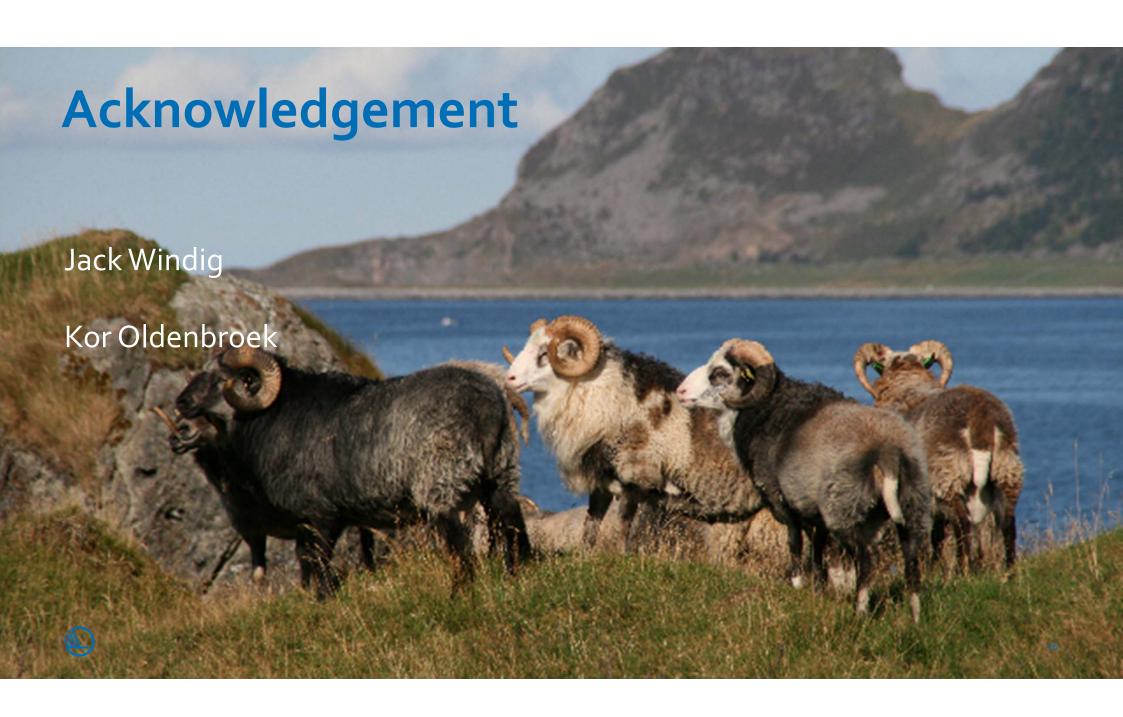
Documentation

Link cryo-conserved samples to

- Phenotypic records (EBV)
- Genomic data
- Socio-cultural descriptors

1000 Bulls Genome Project

- ☐ IMAGE project (Horizon2020)
- Genotype bulls in genebanks least related to genotyped bulls
- ☐ More complete inventory of genomic variation



Gene-editing

- "Correct" deleterious alleles
 - ☐ Several candidate loci
- ☐ Introduce variation at specific loci
 - ☐ Few candidate loci
 - ☐ Identification of candidates
 - Historical diversity
 - Comparative diversity across breeds and species

