

Gene Banks for Animal Genetic Resources: the FAO Perspective

Paul Boettcher FAO-AGAG Rome, Italy

Global Plan of Action and Interlaken Declaration

FAO position on the importance of AnGR and their proper management (including conservation is summarized in the *Global Plan of Action for AnGR* and the *Interlaken Declaration*

- AnGR critical for food security, sustainable livelihoods and human well-being
- Resulted from generations of actions by diverse stakeholders
- Provide benefits to the environment, humanity and cultural heritage
- Their erosion would compromise efforts to achieve food security, human nutrition and rural development
- Prompt action for conservation is needed

Global Plan of Action

- Global Plan of Action is internationally agreed framework for management of AnGR
- Conservation one of the Strategic Priority Areas
 - 5 Strategic Priorities:
 - (1) to establish national conservation policies (SP7)
 - (2 and 3) to establish or strengthen *in situ* (SP8) and *ex situ* (SP9) conservation programmes
 - (4) to develop and implement regional and global longterm conservation strategies (SP10)
 - (5) to develop approaches and technical standards for conservation (SP11)

National Conservation Policies

- National governments have the main responsibility for management of their AnGR
- FAO recommends the development (updating) of National Strategies and Action Plans for management of AnGR
 - Including national goals and objectives for conservation
- Currently ~50 countries are actively developing or implementing NSAP
 - High priority for 25 others

FAO Guidelines for Conservation

- FAO Guidelines for Cryoconservation of AnGR
 - Endorsed by 13th CGRFA in 2011
 - Currently in press
 - Available Summer 2012
- FAO Guidelines for In Vivo Conservation of AnGR
 - To be presented to 7th session of ITWG in October 2012
 - Endorsement foreseen at 14th by CGRFA (April 2013)
 - Publication foreseen in Summer 2013

In Situ vs. Ex situ Conservation

- Two possibilities for conservation of AnGR
 - In situ
 - Conservation on farm by farmers
 - Ex situ
 - Conservation away from the production environment
 - genetic material in gene banks
 - animals on agricultural parks or government farms
- In situ is generally preferred for sustainability
 - Genetic diversity of animals evolving with environment
 - Agro-ecosystem
- Ex situ is complementary
 - Primary in special cases

National Gene Banks

- Establishment of national gene banks for AnGR is highly recommended
- Ideal system will depend on the country
- Influencing factors:
 - Conservation objectives
 - Existing infrastructure and technical capacity
 - Species
 - Funding
- Ideally NSAP should be in place first
 - Do not wait with highly endangered AnGR!

National Gene banks

- Various stakeholders should be involved
 - Farmers
 - Breeders' associations
 - Government ministries
 - Universities and research institutes
 - AI and other breeding companies
 - National Coordinator for management AnGR
- Conservation objectives
 - Breed reconstitution / insurance
 - Management of diversity of live populations
 - Gene introgression

Genetic Material

- Semen is the most common material
 - Low cost collection and use
 - Requires moderate technical capacity across species
 - Cannot reconstruct genome at 100%
- Embryos are an option for some species/situations
 - Involves greater costs and technical capacity
 - Some species limitations
 - Can reconstruct entire genome
- Somatic cells are an attractive option for low-cost protection against extinction
 - Utilization is difficult and expensive

Genebank Costs

- Establishing gene banks "from the ground up" requires significant expenditures
 - Collection and freezing equipment
 - Laboratory buildings
 - Animal housing and holding facilities
- Costs can be decreased significantly if existing facilities can be used
 - ~10,000 € for the basic equipment
- AnGR are valuable and costs should be amortized over a long time horizon

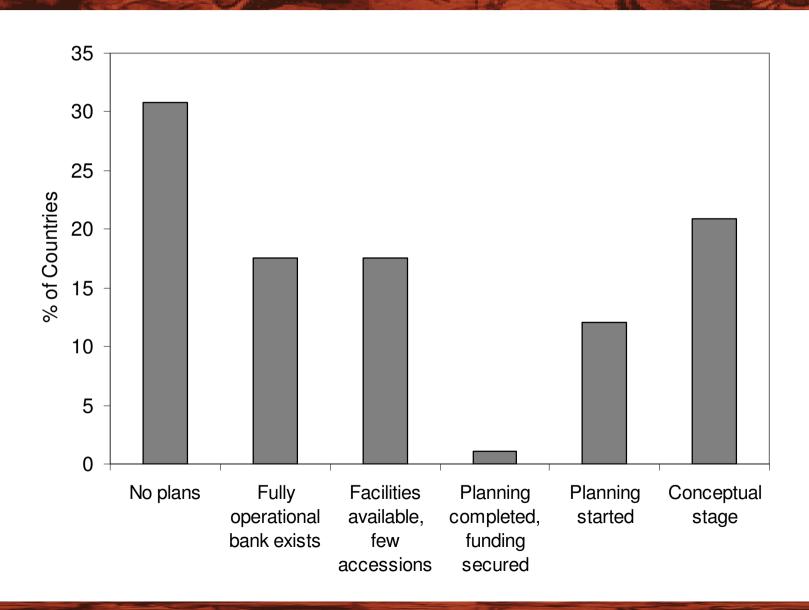
Security and Sanitation

Valuable AnGR must be protected from disease and disaster

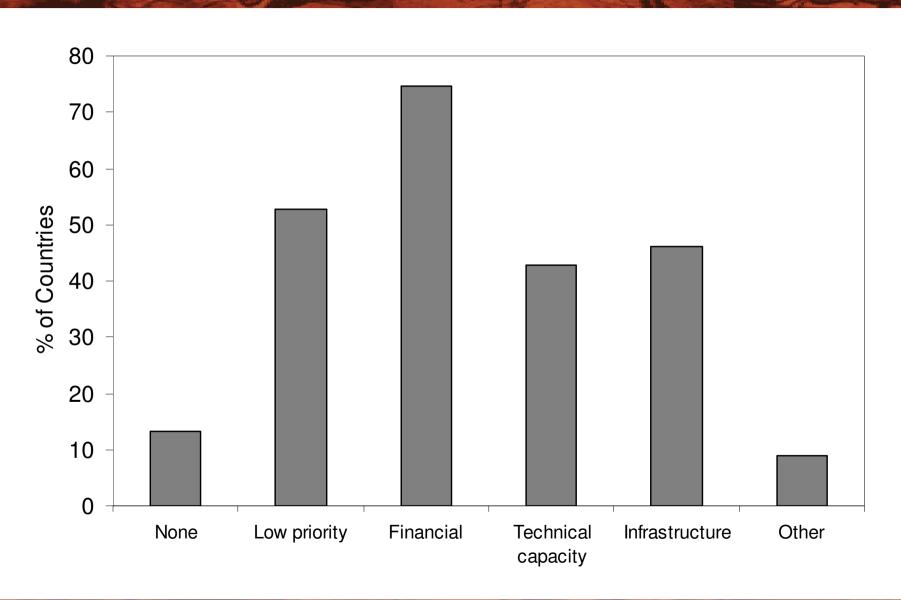
- Employ the maximum level of sanitation possible
 - Follow OIE guidelines
 - especially for AnGR to cross national borders
- It may be necessary to balance sanitation and collection of valuable AnGR
 - Field collection
 - Samples should be stored separately
- Storage of duplicate collections in separate geographic locations is highly recommended!

Data and Databases

- Accurate data management is absolutely necessary
 - Performing routine operations
 - quality control
 - evaluation of stored genetic diversity
 - Managing use of stored material
- Minimum information
 - Sample ID, type, date
 - Animal ID, breed, pedigree
 - Supplier information
- Available software
 - Cryoweb Germany
 - Animal GRIN US, Canada, Brazil


Legal Issues

- Owner of animal and owner of gene bank are usually not the same
 - Who is the owner of the stored germplasm?
- Terms should be outlined in MAA
 - Owner of germplasm
 - Costs associated with acquisition
 - Conditions of germplasm use
- Utilization of material often involves third party
 - Another MTA is needed
 - Procedure for accessing samples
 - ensure integrity of remaining collection


Current Status of National Gene Banks

Constraints to Gene Banking

National Conservation Activities

Species	Type of conservation		
	ex situ		
	in situ	in vivo	cryo
	(%)		
Buffalo	22	11	11
Camelids	14	7	2
Cattle	73	40	49
Chicken	48	34	10
Goat	58	31	30
Equines	41	21	20
Pig	37	24	20
Rabbit	23	17	6
Sheep	63	30	31

International Gene Banks

- FAO supports the concept (SP10)
- International banks could play various roles:
 - 1) to provide cryoconservation facilities for countries lacking national gene banks
 - 2) to provide back-up storage for national gene banks
 - 3) to store material from transboundary breeds
- Presently there is little multi-country gene banking
 - Sanitary regulations are a constraint
- Material Transfer Agreements will be critical
 - Nagoya Protocol

Conclusions

- Gene banking can play an important role in a national programme for AnGR management
 - Based on NSAP
 - Complementary to in situ conservation
- Each country should develop its own plan based on needs and capabilities
- National gene banks are the first priority, but international banks would be a valuable tool

Thank you!